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UNIT - III 

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point 

Representation. 

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, 

Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations. 

------------------------------------------------------------------------------------------------------------------------------------------------ 

Data Types 

 The data types found in the registers of digital computers may be classified as being one of the 

following categories: (1) numbers used in arithmetic computations, (2) letters of the alphabet used in 

data processing. and (3) other discrete symbols used for specific purposes.  

 All types of data, except binary numbers, are represented in computer registers in binary coded form. 

This is because registers are made up of flip-flops and flip-flops are two-state devices that can store 

only l's and O's. The binary number system is the most natural system to use in a digital computer. 

Number Systems: 

 A number system of base, or radix, r is a system that uses distinct symbols for r digits. Numbers 

are represented by a string of digit symbols.  

 To determine the quantity that the number represents, it is necessary to multiply each digit by an 

integer power of r and then form the sum of all weighted digits.  

For example: The decimal number system in everyday use employs the radix 10 system.  

The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits 724.5 is interpreted to 

represent the quantity 

 7  x  102  +  2  x 101  +  4  x  100 +  5  x  10-1 

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal number can be similarly 

interpreted to find the quantity it represents. 

 The binary number system uses the radix 2. The two digit symbols used are 0 and 1. The string of 

digits 101101 is interpreted to represent the quantity 

 1 x 25 + 0  x   24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45 

To distinguish between different radix numbers, the digits will be enclosed in parentheses and the radix 

of the number inserted as a subscript.  
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For example, to show the equality between decimal and binary forty-five we will write 

(101101)2 = (45)10 

 Besides the decimal and binary number systems, the octal (radix 8) and hexadecimal (radix 16) 

are important in digital computer work.  

 The eight symbols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the 

hexadecimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 0, E, and F.  

 The last six symbols are, unfortunately, identical to the letters of the alphabet and can cause 

confusion at times. However, this is the convention that has been adopted. When used to represent 

hexadecimal digits, the symbols A, B, C, D, E, F correspond to the decimal numbers 10, 11, 12, 13, 

14, 15, respectively. 

 A number in radix r can be converted to the familiar decimal system by forming the sum of the 

weighted digits.  

For example, octal 736.4 is converted to decimal as follows: 

 (736.4)8 = 7 x 82  +  3 x 81  +  6 x 80  +  4 x 8-1 

   = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 = (478.5)10 

The equivalent decimal number of hexadecimal F3 is obtained from the following calculation: 

(F3)16 =  F  x  161  +  3  x 160  = 15 x 16 + 3  =  (243)10 

Conversion: 

Decimal to Binary Conversion: 

Conversion from decimal to its equivalent representation in the radix r system is carried out by 

separating the number into its integer and fraction parts and converting each part separately. 

 The conversion of a decimal integer into a base r representation is done by successive divisions 

by r and accumulation of the remainders.  

 The conversion of a decimal fraction to radix r representation is accomplished by successive 

multiplications by r and accumulation of the integer digits so obtained. 

Example:  The conversion of decimal 41. 6875 into binary 

 Figure 3-A demonstrates these procedures 

 The conversion of decimal 41.6875 into binary is done by first separating the number into its 

integer part 41 and fraction part .6875. 
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 The integer part is converted by dividing 41 by r = 2 to give an integer quotient of 20 and a 

remainder of 1. The quotient is again divided by 2 to give a new quotient and remainder. This 

process is repeated until the integer quotient becomes 0. 

 The fraction part is converted by multiplying it by r = 2 to give an integer and a fraction. The new 

fraction (without the integer) is multiplied again by 2 to give a new integer and a new fraction. 

This process is repeated until the fraction part becomes zero or until the number of digits obtained 

gives the required accuracy. 

 Figure 3-A:  Conversion of decimal 41.6875 into binary. 

 

 

 

 

 

 

 

Octal and Hexadecimal Numbers: 

 The conversion from and to binary, octal, and hexadecimal representation plays an important part in 

digital computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and 

each hexadecimal digit corresponds to four binary digits.  

 The conversion from binary to octal is easily accomplished by partitioning the binary number into 

groups of three bits each. The corresponding octal digit is then assigned to each group of bits and the 

string of digits so obtained gives the octal equivalent of the binary number. 

Example:  
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 The corresponding octal digit for each group of three bits is easily remembered after studying the 

first eight entries listed in Table 3-1 

 

  

 

 

 

 

 

 

 

 

 

 

 

 The correspondence between a hexadecimal digit and its equivalent 4-bit code can be found in the 

first 16 entries of Table 3-2. 
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Binary-Coded Decimal (BCD): 

 It is very important to understand the difference between the conversion of decimal numbers into 

binary and the binary coding of decimal numbers.  

 For example, when converted to a binary number, the decimal number 99 is represented by the string 

of bits 1100011, but when represented in BCD, it becomes 1001 1001.  

 The only difference between a decimal number represented by the familiar digit symbols 0, 1, 2, . .. , 

9 and the BCD symbols 0001, 0010, . . . , 1001 is in the symbols used to represent the digits-the 

number itself is exactly the same. 

 A few decimal numbers and their representation in BCD are listed in Table 3-3. 
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Complements 

Complements are used in digital computers for simplifying the subtraction operation and for 

logical manipulation. There are two types of complements for each base r system: the r's 

complement and the (r - l)'s complement. 

9’s complement: 

 Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as (r' - 1) - N.  

 For decimal numbers r = 10  and r - 1= 9, so the 9's complement of N is (10n - 1) - N. Now, 10n 

represents a number that consists of a single 1 followed by n 0's. 10n - 1 is a number represented 

by n 9's. 

 For example, with n = 4 we have 104 = 10000 and 104 - 1 = 9999. It follows that the 9' s complement 

of a decimal number is obtained by subtracting each digit from 9.  

 For example: 

 9's complement of 546700 is 999999 - 546700 = 453299 . 

    9's complement of 12389 is 99999 - 12389 = 87610 
 

1's complement: 

 For example: The I's complement of 10110011 is 0100110 and the 1' s complement of 0001111 

is 1110000. 

10's complement: 

It obtained by adding 1 to the 9' s complement value 

 For example: 

The 10's complement of 246700 is 753300 and is obtained. 

9' s complement value 999999 – 246700 = 753299 

                     +1 

     ________________ 

The 10's complement     = 753300    

2's complement: 

 The 2's complement can be formed by leaving all least significant 0's and the first 1 unchanged, 

and then replacing 1's by 0's and 0's by 1's in all other higher significant bits. 

 Example:  

The 2's complement of 1101100 is 0010100 and is obtained by leaving the two low-order 0's and 

the first 1 unchanged, and then replacing 1's by 0's and 0's by 1's in the other four most 

significant bit. 
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Fixed-Point Representation 

 In ordinary arithmetic, a negative number is indicated by a minus sign and a positive number by a 

plus sign. Because of hardware limitations, computers must represent everything with 1's and 0's, 

including the sign of a number. 

 In addition to the sign, a number may have a binary (or decimal) point. The position of the binary 

point is needed to represent fractions, integers, or mixed integer-fraction numbers.  

 The representation of the binary point in a register is complicated by the fact that it is characterized 

by a position in the register.  

 There are two ways of specifying the position of the binary point in a register: by giving it a fixed 

position or by employing a floating-point representation. The fixed-point method assumes that the 

binary point is always fixed in one position. 

Integer Representation: 

When an integer binary number is positive, the sign is represented by 0 and the magnitude by a 

positive binary number. When the number is negative, the sign is represented by 1 but the rest of the 

number may be represented in one of three possible ways: 

             1. Signed-magnitude representation 

            2. Signed-1' s complement representation 

            3. Signed 2' s complement representation 

 The signed-magnitude representation of a negative number consists of the magnitude and a negative 

sign. In the other two representations, the negative number is represented in either the 1's or 2's 

complement of its positive value. 

As an example, consider the signed number 14 stored in an 8-bit register. + 14 

is represented by a sign bit of 0 in the leftmost position followed by the binary equivalent of  

                                       +14: 00001110.  

There are three different ways to represent -14 with eight bits. 

        In signed-magnitude representation          1 0001110 

In signed-1's complement representation          1 11 10001 

In signed-2's complement representation          1 11 10010 

           Signed magnitude: Complement only the sign bit 

   Signed 1's complement: Complement all the bits including sign bit 

 Signed 2's complement: Take the 2's complement of the number, including its sign bit 
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Arithmetic Addition: 

 The addition of two numbers in the signed-magnitude system follows the rules of ordinary 

arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common 

sign.  

 If the signs are different, we subtract the smaller magnitude from the larger and give the result the 

sign of the larger magnitude.  

For example, ( + 25) + (- 37) = - (37 - 25) = - 12 

 Numerical examples for addition are shown below. Note that negative numbers must initially be in 

2’s complement and that if the sum obtained after the addition is negative, it is in 2's complement 

form. 

+6       00000110                                               -6     11111010 

+13     00001101                                            +13    00001101 

         -----------------                                               ----------------- 

+19     00010011                                            +7    000001 11 

       --------------------                                            --------------------- 

+6   00000110                                          - 6     11111010 

- 13 11110011                                       - 13     11110011 

--------------------                                       ---------------------- 

-7   1111 1001                                          -19   11101101 

-------------------                                       --------------------- 

 The complement form of representing negative numbers is unfamiliar to people used to the 

signed-magnitude system.  

 To determine the value of a negative number when in signed-2's complement, it is necessary to 

convert it to a positive number to place it in a more familiar form.  

 For example, the signed binary number 1111 1001 is negative because the leftmost bit is I. Its 2' 

s complement is 00000111, which is the binary equivalent of +7. We therefore recognize the 

original negative number to be equal to - 7 

Arithmetic Subtraction: 

 Subtraction of two signed binary numbers when negative numbers are in 2' s complement form is 

very simple and can be stated as follows: Take the 2's complement of the subtrahend (including 

the sign bit) and add it to the minuend (including the sign bit).  

 A carry out of the sign bit position is discarded . 

This is demonstrated by the following relationship:  
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(±A) - ( + B) = (±A) + (- B ) 

(±A) - (- B) = (±A) + ( + B ) 

 But changing a positive number t o a negative number i s easily done b y taking its 2's complement.  

 The reverse is also true because the complement of a negative number in complement form produces 

the equivalent positive number. 

Consider the subtraction of (-6) - (- 13) = +7.  

In binary with eight bits this is written as  

11111010 - 11110011 .  

The subtraction is changed to addition by taking the 2's complement of the subtrahend (- 13) to give 

(+ 13).  

In binary this is 1111 1010 + 00001101 = 100000111 . Removing the end carry, we obtain the 

correct answer 00000111 ( + 7). 

Floating-Point Representation 

 The floating-point representation of a number has two parts. 

 The first part represents a signed, fixed-point number called the mantissa. 

 The second part designates the position of the decimal (or binary) point and is called the 

exponent. 

 The fixed-point mantissa may be a fraction or an integer.  

For example, the decimal number + 6132.789 is represented in floating-point with a fraction and an 

exponent as follows: 

Fraction Exponent 

      + 0 .6132789        + 04 

 

 The value of the exponent indicates that the actual position of the decimal point is four positions to 

the right of the indicated decimal point in the fraction.  

 This representation is equivalent to the scientific notation +0. 6132789 X 10+4. 

 Floating-point is always interpreted to represent a number in the following form: 

m x re 

 Only the mantissa m and the exponent e are physically represented in the register (including their 

signs). The radix (base) r and the radix-point position of the mantissa are always assumed. 
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Example: binary number + 1001.11 is represented with an 8-bit fraction and 6-bit exponent  as follows: 

                              Fraction              01001110 

                              Exponent             000100 

 The fraction has a 0 in the leftmost position to denote positive 

 The exponent has the equivalent binary number +4. The floating-point number is equivalent to 

                      m x 2e = + (.1001110)2 x 2+4 

 Example : A binary number +1001.11 in 16-bit floating point number representation (6-bit exponent 

and 10-bit fractional mantissa)  

    1-bit                                   6-bits                                         10-bits 

0 0 00100 1001110  

Sign Exponent Fraction 
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Computer Arithmetic 

Addition and Subtraction: 

 There are three ways of representing negative fixed-point binary numbers:  

 signed-magnitude 

 signed-l's complement or signed-2's complement. 

 Most computers use the signed-2's complement representation when performing arithmetic 

operations with integers.  

 For floating-point operations, most computers use the signed-magnitude representation for the 

mantissa. 

Here we discuss the addition and subtraction algorithms for data represented in signed-magnitude and 

again for data represented in signed-2's complement. 

 

Addition and Subtraction with Signed-Magnitude Data: 

 We designate the magnitude of the two numbers by A and B. When the signed numbers are added or 

subtracted, we find that there are eight different conditions to consider, depending on the sign of the 

numbers and the operation performed.  

 These conditions are listed in the first column of Table 3-4. The other columns in the table show the 

actual operation to be performed with the magnitude of the numbers. The last column is needed to 

prevent a negative zero. In other words, when two equal numbers are subtracted, the result should be 

+0 not -0. 

Table-3-4: Addition and Subtraction of Signed-Magnitude Numbers 

 

 

 

 

 

 

 

 

The algorithms for addition and subtraction are derived from the table and can be stated as follows (the 

words inside parentheses should be used for the subtraction algorithm) 
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Addition algorithm: when the signs of A and B are identical, add the two magnitudes and attach the 

sign of A to the result. When the signs of A and B are different, compare the magnitudes and subtract 

the smaller number from the larger.  

 Choose the sign of the result to be the same as A if A > B or the complement of the sign of A if A < B.  

 If the two magnitudes are equal, subtract B from A and make the sign of the result positive. 

Subtraction algorithm: when the signs of A and B are different, add the two magnitudes and attach the 

sign of A to the result. When the signs of A and B are identical, compare the magnitudes and subtract 

the smaller number from the larger.  

 Choose the sign of the result to be the same as A if A > B or the complement of the sign of A if A < 

B. If the two magnitudes are equal, subtract B from A and make the sign of the result positive. 

Hardware Algorithm: 

The flowchart for the hardware algorithm is presented in Fig. 3-B.  

Step1: The two signs AS, and BS, are compared by an exclusive-OR gate. If the output of the gate is 0, 

            the signs are identical; if it is 1, the signs are different. 

Step2:  For an add operation, identical signs dictate that the magnitudes be added.  For a subtract  

           operation, different signs dictate that the magnitudes be added.  

Step3:    

 The magnitudes are added with a micro operation EA A + B. where EA is a register that  

Combines E and A. The carry in E  after the addition constitutes an overflow if it is equal to 1.  

The value of E is transferred into the add-overflow flip-flop AVF. 

 The two magnitudes are subtracted if the signs are different for an add operation or identical 

for a subtract operation. The magnitudes are subtracted by adding A to the 2's complement of 

B. No overflow can occur if the numbers are subtracted so AVF is cleared to 0.  
 

Step4:    

 If E 1 indicates that A >=B and the number in A is the correct result. If this number is zero, 

the sign AS, must be made positive to avoid a negative zero.  

 If E0 indicates that A < B. For this case it is necessary to take the 2's complement of the 

value in A. This operation can be done with one micro operation A  -A+ 1. 

 When A < B, the sign of the result is the complement of the original sign of A. It is then 

necessary to complement AS, to obtain the correct sign. The final result is found in register A 

and its sign in AS.  

moodbanao.net



13 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3-B: Flow chart for add and subtract operations. 

 

Addition and Subtraction with Signed-2's Complement Data: 

 The leftmost bit of a binary number represents the sign bit: 0 for positive and 1 for negative. If the 

sign bit is 1, the entire number is represented in 2' s complement form.  

 Thus + 33 is represented as 00100001 and - 33 as 1101 1 1 1 1 . Note that 11011111 is the 2's 

complement of 00100001, and vice versa. 

Hardware Algorithm: 

The algorithm for adding and subtracting two binary numbers in signed- 2’s complement representation 

is shown in the flowchart of Fig. 3-C.  
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Step 1: The sum is obtained by adding the contents of AC and BR (including their sign bits and here we 

             name the A register AC (accumulator) and the B register BR).  

Step 2: The overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it is cleared to 

             0 otherwise.  

Step 3: The subtraction operation is accomplished by adding the content of AC to the 2's complement of  

              BR .Taking the 2's complement of BR has the effect of changing a positive number to negative,  

             and vice versa. 

Step 4: An overflow must be checked during this operation because the two numbers added could have  

            the same sign.  The programmer must realize that if an overflow occurs, there will be an  

            erroneous result in the AC register. 

 

Fig 3-C: Algorithm for adding and subtracting numbers in signed 2's complement representation. 

 Comparing this algorithm with its signed-magnitude counterpart, we note that it is much simpler to 

add and subtract numbers if negative numbers are maintained in signed-2' s complement 

representation.  

 For this reason most computers adopt this representation over the more familiar signed-magnitude 
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Multiplication Algorithm: 

 Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with 

paper and pencil by a process of successive shift and add operations.  

This process is best illustrated with a numerical example. 

23        1 0 1 1 1  Multiplicand 

19        X 1 0 0 1 1  Multiplier 

--------------------------- 

                10111 

             10111 

           00000  + 

        00000 

     10111 

----------------------------- 

             437  1101 10101   Product 

 The process consists of looking at successive bits of the multiplier, least significant bit first. If the 

multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied down.  

 The numbers copied down in successive lines are shifted one position to the left from the previous 

number. Finally, the numbers are added and their sum forms the product. 

 The sign o f the product is determined from the signs of the multiplicand and multiplier. If they are 

alike, the sign of the product is positive. If they are unlike, the sign of the product is negative. 

Hardware Algorithm: 

Figure 3-D is a flowchart of the hardware multiply algorithm. 

 Step 1:  

 Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in BS, 

and QS, respectively.  

 The signs are compared, and both A and Q are set to correspond to the sign of the product since a 

double-length product will be stored in registers A and Q.  

Step 2: Registers A and E are cleared and the sequence counter SC is set to a number equal to the number  

of bits of the multiplier.  
 

Step 3: After the initialization, the low-order bit of the multiplier in Qn, is tested. If it is a 1, the   

multiplicand in B is added to the present partial product in A .If it is a 0, nothing is done.  

moodbanao.net



16 
 

Step 4: Register EAQ is then shifted once to the right to form the new partial product. The sequence 

counter is decremented by 1 and its new value checked. If it is not equal to zero, the process is repeated 

and a new partial product is formed. The process stops when SC = 0. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3-D: Flowchart for multiply operation 

NOTE: The partial product formed in A is shifted into Q one bit at a time and eventually replaces the 

multiplier. The final product is available in both A and Q, with A holding the most significant bits and Q 

holding the least significant bits 
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Numerical Example :The previous numerical example is repeated in Table 3-E to clarify the hardware 

multiplication process. The procedure follows the steps outlined in the flowchart. (here P refers the  SC 

and C Reffered as E) 

Table 3-E: Numerical Example for Binary Multiplier 
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Booth Multiplication Algorithm: 

 Booth algorithm gives a procedure for multiplying binary integers in signed-2's complement 

representation. 

 It operates on the fact that strings of 0's in the multiplier require no addition but just shifting, and 

a string of 1's in the multiplier from bit weight 2K to weight 2m can be treated as 2K+1 - 2m.  

 For example, the binary number 001110 ( + 14) has a string of 1's from 23 to 21  (k = 3, m = 1).  

The number can be represented as 2K+ l - 2m = 24 - 21 = 16 -2 = 14.  

Therefore, the multiplication M x 14, where M is the multiplicand and 14 the multiplier, can be 

done as M x 24 - M x 21 . 

Thus the product can be obtained by shifting the binary multiplicand M four times to the left and 

subtracting M shifted left once. 

 

 

 As in all multiplication schemes, Booth algorithm requires examination of the multiplier bits and 

shifting of the partial product.  

 Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial 

product, or left unchanged according to the following rules: 

1. The multiplicand is subtracted from the partial product upon encountering the first least 

significant 1 in a string of 1's in the multiplier. 

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that 

there was a previous 1) in a string of 0's in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit. 
 

The Hardware Implementation: 

The registers are AC, BR, and QR. 

Step 1: The multiplicand in BR and Qn, designates the least significant bit of the multiplier in register 

             QR . An extra flip-flop Qn+1 is appended to QR to facilitate a double bit inspection of the 

              Multiplier. 
 

Step 2: AC and the appended bit Qn+1 are initially cleared to 0 and the sequence counter SC is set to a  

             number n equal to the number of bits in the multiplier. 
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Step 3: The two bits of the multiplier in Qn, and Qn+1 are inspected:- 

 If the two bits are equal to 10, it means that the first 1 in a string of 1' s has been 

encountered. This requires a subtraction of the multiplicand from the partial product in AC . 

 If the two bits are equal to 01, it means that the first 0 in a string of 0' s has been 

encountered. This requires the addition of the multiplicand to the partial product in AC .  

 When the two bits are equal, the partial product does not change 

Step 4: The next step is to shift right the partial product and the multiplier (including bit Qn+1). This is  

             an arithmetic shift right (ashr) operation which shifts AC and QR to the right and leaves the 

 sign bit in AC unchanged .The sequence counter is decremented and the computational loop is  

repeated n times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3-F: Booth algorithm for multiplication o f signed 2's complement numbers. 
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A numerical Example of Booth algorithm: 

Example 1:       (-9)       1 0 1 1 1  Multiplicand 

      (-13)           1 0 0 1 1  Multiplier 

 

 

 

 

 

                                                                                                                                                                                                                                                            

 

 

 

 
 

 

 Here the final product stored in AC and QR is 0001110101 is +117 

 

Example 2: Multiply (+15) X (+13) 

 

Consider multiply +15 and +13. Binary representation of +15 is 01111. i.e BR= 01111 (+15) 

-15 is (-BR)+1 i.e 10001 (-15) 

+13 is QR i.e 01101 (+13). 

 In 1st iteration least significant bit of Q0 is 1 and Qn+1 is 0 so subtract BR from AC and store in AC. 

Right shift QR and AC and decrease SC by 1. 

 

Qn Qn+1  AC QR Qn+1 SC 

1 0 
Initial 

Subtract BR 

00000 

10001 
01101 0 101 

   10001    

  ashr 11000 10110 1 100 

 

 In 2nd  iteration least significant bit of Q0 is 0 and Qn+1 is 1 so add BR to AC and store in AC. Right 

shift QR and AC and decrease SC by 1. 

 

Qn Qn+1       BR=10111  

           (-BR)+1 =01001      AC         QR      Qn+1  SC 
--------------------------------------------------------------------------------------------------------------------------------- 
1    0  Initial    00000       10011      0   101 
           Subtract BR   01001 
                 ----------- 
     01001 
  ashr   00100     11001      1   100 
 

1   1  ashr       00010     01100      1   011 
 

0   1  Add BR  10111 
     --------- 
     11001 
  ashr     11100  10110       0   010 
0   0  ashr     11110  01011       0   001 
1   0  Subtract BR  01001 
     --------- 
     00111 
  ashr     00011  10101      1   000 

Note: Actually value of 9 is 1001 but here 

we are using 5 bit register so 01001. To get 

-9.  I will do 2’s complement i.e 10111 
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Qn Qn+1  AC QR Qn+1 SC 

0 1 Add BR 01111    

   00111    

  ashr 00011 11011 0 011 

 
 In 3rd  iteration least significant bit of Q0 is 1 and Qn+1 is 0 so subtract BR from AC and store in AC. 

Right shift QR and AC and decrease SC by 1. 
 

Qn Qn+1  AC QR Qn+1 SC 

1 0 Subtract BR 10001    

   10100    

  ashr 11010 01101 1 010 

 
 In 4th  iteration least significant bit of Q0 is 1  and Qn+1 is 1 so,  Right shift QR and AC and decrease 

SC by 1. 

Qn Qn+1  AC QR Qn+1 SC 

1 1 ashr 11101 00110 1 001 

 
 In 5th   iteration least significant bit of Q0 is 0 and Qn+1 is 1 so add BR to AC and store in AC. Right 

shift QR and AC and decrease SC by 1. 

Qn Qn+1  AC QR Qn+1 SC 

0 1 Add BR 01111    

   01100    

  ashr 00110 00011 0 000 

 
 When (+15) multiplied by (+13) gives +195 = (0011000011)2 

 
Example 3: Multiply (+15) X (-13) 

 

Consider multiply +15 and +13. Binary representation of +15 is 01111. i.e BR= 01111 (+15) 

-15 is (-BR)+1 i.e 10001 (-15) 

-13 is QR (13 binary representation is 01101 and -13 is 10011). Now 10011 in QR. 

 In 1st iteration least significant bit of Q0 is 1 and Qn+1 is 0 so subtract BR from AC and store in AC. 

Right shift QR and AC and decrease SC by 1. 
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Qn Qn+1  AC QR Qn+1 SC 

1 0 
Initial 

Subtract BR 

00000 

10001 
10011 0 101 

   10001    

  ashr 11000 11001 1 100 

 

 In 2nd  iteration least significant bit of Q0 is 1 and Qn+1 is 1 so,  Right shift QR and AC and decrease 

SC by 1. 

 

Qn Qn+1  AC QR Qn+1 SC 

1 1 ashr 11100 01100 1 011 

 
 In 3rd  iteration least significant bit of Q0 is 0 and Qn+1 is 1 so add  BR to AC and store in AC. Right 

shift QR and AC and decrease SC by 1. 

 

Qn Qn+1  AC QR Qn+1 SC 

0 1 Add BR 01111    

   01011    

  ashr 00101 10110 0 010 

 
 In 4th  iteration least significant bit of Q0 is 1  and Qn+1 is 0 so , Right shift QR and AC and decrease 

SC by 1. 

Qn Qn+1  AC QR Qn+1 SC 

0 0 ashr 00010 11011 0 001 

 
 In 5th   iteration least significant bit of Q0 is 1 and Qn+1 is 0 so subtract BR from AC and store in AC. 

Right shift QR and AC and decrease SC by 1. 

Qn Qn+1  AC QR Qn+1 SC 

1 0 Subtract BR 10001    

   10011    

  ashr 11001 11101 1 000 

 

 
 When (+15) multiplied by (-13) gives -195 = (1100111101)2 
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Division Algorithm: 
 

Division of two fixed-point binary numbers in signed-magnitude representation is done with paper and 

pencil by a process of successive compare, shift, and subtract operations. 

Numerical example:  

 The divisor B consists of five bits and the dividend A consists of ten bits.  

 The five most significant bits of the dividend are compared with the divisor. 

 Since the 5-bit number is smaller than B, we try again by taking the six most significant bits of A 

and compare this number with B. 

 The 6-bit number is greater than B, so we place a 1 for the quotient bit in the sixth position above 

the dividend. 

  The divisor is then shifted once to the right and subtracted from the dividend. The difference is 

called a partial remainder because the division could have stopped here to obtain a quotient of 1 and 

a remainder equal to the partial remainder. 

  The process is continued by comparing a partial remainder with the divisor 

 If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1 . 

The divisor is then shifted right and subtracted from the partial remainder. 

 If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is 

needed. The divisor is shifted once to the right in any case. Note that the result gives both a 

quotient and a remainder. 

Hardware Implementation for Signed-Magnitude Data 
 

 

 When the division is implemented in a digital computer, it is convenient to change the process 

slightly. Instead of shifting the divisor to the right, the dividend, or partial remainder, is shifted to 

the left, thus leaving the two numbers in the required relative position.  

 Subtraction may be achieved by adding A to the 2's complement of B. The information about the 

relative magnitudes is then available from the end-carry. 
 

Example: 

 

 The divisor is stored in the B register and the double-length dividend is stored in registers A and Q. 

 The dividend is shifted to the left and the divisor is subtracted by adding its 2' s complement value. 

The information about the relative magnitude is available in E. 

 If E = 1, it signifies that A >=B. A quotient bit 1 is inserted into Q, and the partial remainder 

is shifted to the left to repeat the process. 

  If E = 0, it signifies that A < B so the quotient in Q, remains a 0 (inserted during the shift). 
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 The value of B is then added to restore the partial remainder in A to its previous value.  

 The partial remainder is shifted to the left and the process is repeated again until all five quotient bits 

are formed.  

 Note that while the partial remainder is shifted left, the quotient bits are shifted also and after five 

shifts, the quotient is in Q and the final remainder is in A . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-G:  Example of binary division. 
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 Before showing the algorithm in flowchart form, we have to consider the sign of the result and a 

possible overflow condition.  

 The sign of the quotient is determined from the signs of the dividend and the divisor.  

 If the two signs are alike, the sign o f the quotient is plus. If they are unalike, the sign is minus. The 

sign of the remainder is the same as the sign of the dividend. 

 

Divide Overflow: 

 
 

 This divide-overflow condition must be avoided in normal computer operations because the entire 

quotient will be too long for transfer into a memory unit, that is, the same as the length of registers. 

 When the dividend is twice as long as the divisor, the condition for overflow can be stated as 

follows:  

 A divide-overflow condition occurs if the high-order half bits of the dividend constitute a 

number greater than or equal to the divisor.  

 Another problem associated with division is the fact that a division by zero must be 

avoided. 

 Overflow condition is usually detected when a special flip-flop is set. We will call it a divide-

overflow flip-flop and label it DVF. 

 

Hardware Algorithm: 

 

The hardware divide algorithm is shown in the flowchart of Fig. 3-H . 

 The dividend is in A and Q and the divisor in B . The sign of the result is transferred into Q, to be 

part of the quotient.  

 A constant is set into the sequence counter SC to specify the number of bits in the quotient.  

 A divide-overflow condition is tested by subtracting the divisor in B from half of the bits of the 

dividend stored in A. 

 If A >=B, the divide-overflow flip-flop DVF is set and the operation is terminated prematurely. 

 If A < B, no divide overflow occurs so the value of the dividend is restored by adding B to A. 
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       Divide operation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-H:  Flowchart for divide operation 
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Decimal Arithmetic Unit: 

 A CPU with an arithmetic logic unit can perform arithmetic micro operations with binary data. To 

perform arithmetic operations with decimal data, it is necessary to convert the input decimal 

numbers to binary, to perform all calculations with binary numbers, and to convert the results into 

decimal. This may be an efficient method in applications requiring a large number of calculations 

and a relatively smaller amount of input and output data.  

 When the application calls for a large amount of input-output and a relatively smaller number of 

arithmetic calculations, it becomes convenient to do the internal arithmetic directly with the decimal 

numbers. Computers capable of performing decimal arithmetic must store the decimal data in 

binary coded form. The decimal numbers are then applied to a decimal arithmetic unit capable of 

executing decimal arithmetic micro operations. 

BCD Addition: 

 Consider the arithmetic addition of two decimal digits in BCD, together with a possible carry 

from a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater 

than 9 + 9 + 1 = 19, the 1 in the sum being an input-carry. 

 Suppose that we apply two BCD digits to a 4-bit binary adder. The adder will form the sum in 

binary and produce a result that may range from 0 to 19.  

 These binary numbers are listed in Table 3-I and are labeled by symbols K, Z8, Z4, Z2, and Z1. 

 K is the carry and the subscripts under the letter Z represent the weights 8, 4, 2, and 1 that can be 

assigned to the four bits in the BCD code. 

 The first column in the table lists the binary sums as they appear in the outputs of a 4-bit binary 

adder. The output sum of two decimal numbers must be represented in BCD and should appear in 

the form listed in the second column of the table. 

  The problem is to find a simple rule by which the binary number in the first column can be 

converted to the correct BCD digit representation of the number in the second column. 

 In examining the contents of the table, it is apparent that when the binary sum is equal to or less 

than 1001, the corresponding BCD number is identical and therefore no conversion is needed. 

 When the binary sum is greater than 1001, we obtain a nonvalid BCD representation. The 

addition of binary 6 (0110) to the binary sum converts it to the correct BCD representation 

and also produces an output-carry as required. 
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TABLE 3-I: Derivation of BCD Adder 

 

 

 

 

 

 

 

 

 

 

 

 

 One method of adding decimal numbers in BCD would be to employ one 4-bit binary adder and 

perform the arithmetic operation one digit at a time.  

 The low-order pair of BCD digits is first added to produce a binary sum. If the result is equal or 

greater than 1010, it is corrected by adding 0110 to the binary sum. 

 This second operation will automatically produce an output-carry for the next pair of significant 

digits. The next higher-order pair of digits, together with the input-carry, is then added to produce 

their binary sum. If this result is equal to or greater than 1010, it is corrected by adding 0110. 

 The procedure is repeated until all decimal digits are added.  

BCD adder circuit: 

 The logic circuit that detects the necessary correction can be derived from the table entries. It is 

obvious that a correction is needed when the binary sum has an output carry K = 1. 

 The other six combinations from 1010 to 1 1 1 1 that need a correction have a 1 in position Z8.To 

distinguish them from binary 1000 and 1001 which also have a 1 in position Z8, we specify further 

that either Z4 or Z2, must have a 1. 

 The condition for a correction and an output-carry can be expressed by the Boolean function 

C = K + Z8 Z4 + Z8 Z2 
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When C = 1, it is necessary to add 0110 to the binary sum and provide an output-carry for the next stage. 

 

Figure 3-J: Block diagram of BCD adder 

  

 

 

 

 

 

 

 

 

 

 

 

 

 A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in BCD.  

 A BCD adder must include the correction logic in its internal construction. To add 0110 to the binary 

sum, we use a second 4-bit binary adder as shown in Fig. 3-J.  

 The two decimal digits, together with the input-carry, are first added in the top 4-bit binary adder to 

produce the binary sum. When the output-carry is equal to 0, nothing is added to the binary sum. 

 When it is equal to 1, binary 0110 is added to the binary sum through the bottom 4-bit binary adder. 

 The output-carry generated from the bottom binary adder may be ignored, since it supplies 

information already available in the output-carry terminal. 
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BCD Subtraction: 

A straight subtraction of two decimal numbers will require a subtractor circuit that will be somewhat 

different from a BCD adder. It is more economical to perform the subtraction by taking the 9's or 

10's complement of the subtrahend and adding it to the minuend. Since the BCD is not a self-

complementing code, the 9' s complement cannot be obtained by complementing each bit in the 

code. It must be formed by a circuit that subtracts each BCD digit from 9. 

 The 9's complement of a decimal digit represented in BCD may be obtained by complementing the 

bits in the coded representation of the digit provided a correction is included.  

 There are two possible correction methods.  

 In the first method, binary 1010 (decimal 10) is added to each complemented digit and the 

carry discarded after each addition. 

 In the second method, binary 0110 (decimal 6) is added before the digit is complemented.  

 

 As a numerical illustration, the 9's complement of BCD 0111 (decimal 7) is computed by first 

complementing each bit to obtain 1000. Adding binary 1010 and discarding the carry, we obtain 

0010 (decimal 2). By the second method, we add 0110 to 0111 to obtain 1101. Complementing each 

bit, we obtain the required result of 0010. 

BCD Subtraction Circuit: 

 The 9's complement of a BCD digit can also be obtained through a combinational circuit. When this 

circuit is attached to a BCD adder, the result is a BCD adder/subtractor. 

 Let the subtrahend (or addend) digit be denoted by the four binary variables B8, B4, B2, and B1.  

 Let M be a mode bit that controls the add/subtract operation. 

 When M = 0, the two digits are added;  

 When M = 1, the digits are subtracted. 

 Let the binary variables x8, x4, x2, and x1 be the outputs of the 9's complementer circuit. 

  By an examination of the truth table for the circuit, it may be observed that- 

 B1 should always be complemented;  

 B2 is always the same in the 9' s complement as in the original digit; 

 x4 is 1 when the exclusive-OR of B2 and B4 is 1; and  

 x8 is 1 when B8 B4 B2 = 000.  

 The Boolean functions for the 9' s complementer circuit are From these equations we see that x = B 

when M = 0. When M = 1, the x outputs produce the 9' s complement of B 
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x1 = B1M + B1M 

x2 = B2 

x4 = B4M + ( B4B2 + B4 B2)M 

x8 = B8M + B8 B4 B2 M 

 

 

Figure :3-K: One stage of a decimal arithmetic unit. 

 

 One stage o f a decimal arithmetic unit that can add o r subtract two BCD digits is shown in Fig.3-K. 

It consists of a BCD adder and a 9's complementer. The mode M controls the operation of the unit.  

 With M = 0, the S outputs form the sum of A and B.  

 With M = 1, the S outputs form the sum of A plus the9's complement of B.  

 For numbers with n decimal digits we need n such stages. The output carry Ci+1 from one stage must 

be connected to the input carry Ci of the next-higher-order stage.  

 The best way to subtract the two decimal numbers is to let M = 1 and apply a 1 to the input carry C1 

of the first stage. The outputs will form the sum of A plus the 10's complement of B, which is 

equivalent to a subtraction operation if the carry-out of the last stage is discarded.  

( FIG: 3-J) 
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