mood-book

UNIT-V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction
Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor

arbitration, Interprocessor communication and synchronization, Cache Coherence.

Reduced Instruction Set Computer (RISC):

* An important aspect of computer architecture is the design of the instruction set for the processor.

The instruction set chosen for a particular computer determines the way that machine language

programs are constructed

In the early 1980s, a number of computer designers recommended that computers use fewer
instructions with simple constructs so they can be executed much faster within the CPU without

having to use memory as often. This type of computer is classified as a reduced instruction set

computer or RISC.

CISC Characteristics:

A large number of instructions-typically from 100 to 250 instructions
Some instructions that perform specialized tasks and are used infrequently

A large variety of addressing modes-typically from 5 to 20 different modes Variable-length

instruction formats

Instructions that manipulate operands in memory

RISC Characteristics:

The concept of RISC architecture involves an attempt to reduce execution time by simplifying the

instruction set of the computer. The major characteristics of a RISC processor are:
1. Relatively few instructions

2. Relatively few addressing modes

Memory access limited to load and store instructions
All operations done within the registers of the CPU
Fixed-length, easily decoded instruction format
Single-cycle instruction execution

Hardwired rather than micro programmed control

Parallel Processing

The purpose of parallel processing is to speed up the computer processing capability and increase
its throughput, that is, the amount of processing that can be accomplished during a given interval
of time.

Parallel processing can be viewed from various levels of complexity. At the lowest level, we
distinguish between parallel and serial operations by the type of registers used.

Shift registers operate in serial fashion one bit at a time, while registers with parallel load operate
with all the bits of the word simultaneously.

Parallel processing at a higher level of complexity can be achieved by having a multiplicity of
functional units that perform identical or different operations simultancously.

Parallel processing is established by distributing the data among the multiple functional units.

For example, the arithmetic, logic, and shift operations can be separated into three units and the

operands diverted to each unit under the supervision of a control unit.

dder-sub tracto

Integer multiply

Logic unit

Shift unit

Incrementer

Processor — "
- oaung-poin
register 4’| Edd_ﬂg,btp[aﬂ |—’

Floating-point
multiply

Floating-point
divide

Figure 5-A: Processor with multiple functional units.

Figure 5-A shows one possible way of separating the execution unit into eight functional units
operating in parallel.

The operands in the registers are applied to one of the units depending on the operation specified
by the instruction associated with the operands. The operation performed in each functional unit
is indicated in each block of the diagram.

The adder and integer multiplier perform the arithmetic operations with integer numbers. The
floating-point operations are separated into three circuits operating in parallel.

The logic, shift, and increment operations can be performed concurrently on different data. All
units are independent of each other, so one number can be shifted while another number is being

incremented.

There are a variety of ways that parallel processing can be classified. It can be considered from
the internal organization of the processors, from the interconnection structure between processors,
or from the flow of information through the system.

One classification introduced by M. J. Flynn considers the organization of a computer system by

the number of instructions and data items that are manipulated simultaneously.

<~ Single instruction stream, single data stream (SISD)
<~ Single instruction stream, multiple data stream (SIMD)

<~ Multiple instruction stream, single data stream (MISD)

<~ Multiple instruction stream, multiple data stream (MIMD)

Parallel processing has the following main methods:

1. Pipeline processing
2. Vector processing

3. Array processors

Pipelining

¢ Pipelining is a technique of decomposing a sequential process into sub operations, with each sub
process being executed in a special dedicated segment that operates concurrently with all other
segments. A pipeline can be visualized as a collection of processing segments through which
binary information flows. The name "pipeline" implies a flow of information analogous to an
industrial assembly line.

The simplest way of viewing the pipeline structure is to imagine that each segment consists of an

input register followed by a combinational circuit. The register holds the data and the
combinational circuit performs the sub operation in the particular segment. The output of the
combinational circuit in a given segment is applied to the input register of the next segment. A

clock is applied to all registers after enough time has elapsed to perform all segment activity.

Example: Suppose that we want to perform the combined multiply and add operations with a stream

of numbers.

Ai*Bi+Ci for1i=1,2,3,...,7

» Each sub operation is to be implemented in a segment within a pipeline. Each segment has

one or two registers and a combinational circuit as shown in Fig. 5-B.

Figure 5-B: Example of pipeline processing.

R1 through RS are registers that receive new data with every clock pulse.

The multiplier and adder are combinational circuits. The sub operations performed in each
segment of the pipeline are as follows:

R1< A, R2 <B; Input Ai, and Bi,

R3 €R1*R2, R4 <G Multiply and input C,

R5 € R3+R4 Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each clock is

shown in Table 5-C.
Table 5-C.: Content of Registers in Pipeline Example

Segment 2

R3

VO ooe~l v o R e

The first clock pulse transfers Ajand Byinto R1 and R2
The second dock pulse transfers the product of R 1 and R2 into R3 and C1 into R4.
The same clock pulse transfers A, and B; into R1 and R2.

The third clock pulse operates on all three segments simultaneously. It places A3, and B3z into

R1 and R2, transfers the product of R1 and R2 into R3, transfers C,, into R4, and places the
sum of R3 and R4 into RS5. It takes three clock pulses to fill up the pipe and retrieve the first
output from RS5.

From there on, each dock produces a new output and moves the data one step down the

pipeline.

Four-segment pipeline:
The general structure of a four-segment pipeline is illustrated in Fig. 5-D.

Clock

Figure 5-D: Four-segment pipeline

The operands pass through all four segments in a fixed sequence. Each segment consists of a
combinational circuit S; that performs a sub operation over the data stream flowing through the
pipe.

The segments are separated by registers R; that hold the intermediate results between the stages.
Information flows between adjacent stages under the control of a common clock applied to all the
registers simultaneously.

» We define a task as the total operation performed going through all the segments in the pipeline.

The behavior of a pipeline can be illustrated with a space-time diagram

1 2 : 5 ; g

T | Tz Ts

T,

Figure 5-E: Space- time diagram for pipeline.

The horizontal axis displays the time in clock cycles and the vertical axis gives the segment
number.
The diagram shows six tasks Ty through T executed in four segments. Initially, task T is handled

by segment 1.

After the first clock, segment?2 is busy with Ty, while segment 1 is busy with task T .

Continuing in this manner, the first task T is completed after the fourth clock cycle.

* From then on, the pipe completes a task every clock cycle. No matter how many segments there

are in the system, once the pipeline is full, it takes only one clock period to obtain an output

Arithmetic Pipeline:

» Pipeline arithmetic units are usually found in very high speed computers. They are used to
implement floating-point operations, multiplication of fixed-point numbers, and similar

computations encountered in scientific problems.

Example: Floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized floating- point binary numbers.

a

X=A X2
b
Y=B X 2

A and B are two fractions that represent the mantissas and a and b are the exponents.

The floating-point addition and subtraction can be performed in four segments, as shown in Fig.
5-F.

The registers labeled R are placed between the segments to store intermediate results. The sub

operations that are performed in the four segments are:

Compare the exponents.
Align the mantissas.
3. Add or subtract the mantissas.
4. Normalize the result.
The exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent difference determines
how many times the mantissa associated with the smaller exponent must be shifted to the right.
This produces an alignment of the two mantissas.
The two mantissas are added or subtracted in segment 3. The result is normalized in segment 4.

When an overflow occurs, the mantissa of the sum or difference is shifted right and the exponent

incremented by one.

If an underflow occurs, the number of leading zeros in the mantissa determines the number of left

shifts in the mantissa and the number that must be subtracted from the exponent.

Exponents Mantissas

Compare Difference
Segment 1: exponents -

by subtraction

h 4

Segment2: [Chooseexponent | _»| Align mantissa

Segment 3: Add or subtract

mantissas

Segment 4: Adjust Normalize
gxponent result

Figure 5-F: Pipeline Floating-point addition and subtraction

The following numerical example may clarify the sub operations performed in each segment. For
simplicity, we use decimal numbers, although Fig. 5-F refers to binary numbers.

Consider the two normalized floating-point numbers:

X=0.9504 X 102

Y =0.8200 X 10?

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The larger exponent 3 is
chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right to obtain

X=0.9504 X 10°

Y =0.0820 X 103
This aligns the two mantissas under the same exponent. The addition of the two mantissas in segment

3 produces the sum

Z=1.0324 X 103

The sum is adjusted by normalizing the result so that it has a fraction with a nonzero first digit. This
is done by shifting the mantissa once to the right and incrementing the exponent by one to obtain the

normalized sum.
7Z=0.10324 X 10*

The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point pipeline

are implemented with combinational circuits.

Instruction Pipeline:

An instruction pipeline reads consecutive instructions from memory while previous
instructions are being executed in other segments.

These causes the instruction fetches and executes phases to overlap and perform simultaneous
operations. One possible digression associated with such a scheme is that an instruction may
cause a branch out of sequence.

In that case the pipeline must be emptied and all the instructions that have been read from

memory after the branch instruction must be discarded.

» Computers with complex instructions require other phases in addition to the fetch and execute

to process an instruction completely. The following steps are

1. Fetch the instruction from memory.

Decode the instruction.

Calculate the effective address.
Fetch the operands from memory.
Execute the instruction.

Store the result in the proper place.

Example: Four-Segment Instruction Pipeline

+» Assume that the decoding of the instruction can be combined with the calculation of the effective

address into one segment. Assume further that most of the instructions place the result into a

processor registers so that the instruction execution and storing of the result can be combined
into one segment. This reduces the instruction pipeline into four segments.

. !

Fetch instruction
Segment 1 from memory

Decode instruction
And calculate
Effective address

§
P i
\ﬁa

Fetch operand
From memory

.

Execute
Segment . instruction

Segment 2

Segment 3

Interrupt

yes/\
handling | Interrupt?

Y

Update PC

‘no

Empty pipe
[S—

Figure 5-G: Four-segment CPU pipeline

% While an instruction is being executed in segment 4, the next instruction in sequence is busy

fetching an operand from memory in segment 3.

% The effective address may be calculated in a separate arithmetic circuit for the third instruction,
and whenever the memory is available, the fourth and all subsequent instructions being
processed at the same time.

Once in a while, an instruction in the sequence may be a program control type that causes a
branch out of normal sequence. In that case the pending operations in the last two segments are
completed and all information stored in the instruction buffer is deleted. The pipeline then

restarts from the new address stored in the program counter.

Similarly, an interrupt request, when acknowledged, will cause the pipeline to empty and start

again from a new address value.

Timing of instruction pipeline:

Step:

Figure 5-H: Timing of instruction pipeline.

¢ Figure 5-H shows the operation of the instruction pipeline. The time in the horizontal axis is
divided into steps of equal duration. The four segments are represented in the diagram with an

abbreviated symbol.

Fl is the segment that fetches an instruction.
DA is the segment that decodes the instruction and calculates the effective address.
FO is the segment that fetches the operand.

EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories so that the operation

in Fl and FO can proceed at the same time. In the absence of a branch instruction, each segment
operates on different instructions.

Thus, in step 4, instruction 1 is being executed in segment EX; the operand for instruction 2 is
being fetched in segment FO; instruction 3 is being decoded in segment DA; and instruction 4
is being fetched from memory in segment FI.

Assume now that instruction 3 is a branch instruction. As soon as this instruction is decoded in

segment DA in step 4, the transfer from FI to DA of the other instructions is halted until the
branch instruction is executed in step 6.

If the branch is taken, a new instruction is fetched in step 7. If the branch is not taken, the
instruction fetched previously in step 4 can be used. The pipeline then continues until a new

branch instruction is encountered.

RISC (Reduced instruction set computer) Pipeline:

» The simplicity of the instruction set can be utilized to implement an instruction pipeline using
a small number of sub operations, with each being executed in one clock cycle.
The data transfer instructions in RISC are limited to load and store instructions. These

instructions use register indirect addressing. They usually need three or four stages in the

pipeline.
To prevent conflicts between a memory access to fetch an instruction and to load or store an

operand, most RISC machines use two separate buses with two memories: one for storing the

instructions and the other for storing the data.

Example: Three-Segment Instruction Pipeline:

The control section fetches the instruction from program memory into an instruction register.
The instruction is decoded at the same time that the registers needed for the execution of the
instruction are selected.

The processor unit consists of a number of registers and an arithmetic logic unit (ALU) that

performs the necessary arithmetic, logic, and shift operations.

» A data memory is used to load or store the data from a selected register in the register file.
The instruction cycle can be divided into three sub operations and implemented in three

segments:
I: Instruction fetch
A: ALU operation

E: Execute instruction

The I segment fetches the instruction from program memory.
The instruction is decoded and an ALU operation is performed in the A segment.

The ALU is used for three different functions, depending on the decoded instruction. It

performs an operation for a data manipulation instruction, it evaluates the effective address
for a load or store instruction, or it calculates the branch address for a program control

instruction.

The E segment directs the output of the ALU to one of three destinations, depending

on the decoded instruction.

It transfers the result of the ALU operation into a destination register in the register file, it
transfers the effective address to a data memory for loading or storing, or it transfers the branch

address to the program counter.

Delayed Load:

Example: Consider now the operation of the following four instructions:

. LOAD: Rl € M [address 1]

. LOAD: R2 €« M [address 2]

. ADD:R3 € RI1+R2
STORE: M[address 3] < R3

If the three-segment pipeline proceeds without interruptions, there will be a data conflict in
instruction 3 because the operand in R2 is not yet available in the A segment.

This can be seen from the timing of the pipeline shown in Fig. 5-I (a).

The E segment in clock cycle 4 is in a process of placing the memory data into R2. The A

segment in clock cycle 4 is using the data from R2, but the value in R2 will not be the correct

value since it has not yet been transferred from memory

Clock cycles:
1.Load R1
2.Load R2

3. Add R1 +R2
4. Store R3

{a) Pipeline timing with data conflict

Clock cycle:

1. Load R1
2.Load R2

3. No-operation
4. Add R1 + R2
5. Store R3

(b) Pipeline timing with delayed load

Figure 5-1: Example of delayed Load.

It is up to the compiler to make sure that the instruction following the load instruction uses

the data fetched from memory.
If the compiler cannot find a useful instruction to put after the load, it inserts a no-op

(nooperation) instruction.

This is a type of instruction that is fetched from memory but has no operation, thus wasting a

clock cycle. This concept of delaying the use of the data loaded from memory is referred to
as delayed load.

Figure 5-1 (b) shows the same program with a no-op instruction inserted after the load to R2
instruction. The data is loaded into R2 in clock cycle 4.

The add instruction uses the value of R2 in step 5. Thus the no-op instruction is used to

advance one clock cycle in order to compensate for the data conflict in the pipeline.

Delayed Branch:
» The method used in most RISC processors is to rely on the compiler to redefine the branches so

that they take effect at the proper time in the pipeline. This method is referred to as delayed branch.

The compiler for a processor that uses delayed branches is designed to analyze the instructions

before and after the branch and rearrange the program sequence by inserting useful instructions

in the delay steps.

For example, the compiler can determine that the program dependencies allow one or more
instructions preceding the branch to be moved into the delay steps after the branch.

These instructions are then fetched from memory and executed through the pipeline while the
branch instruction is being executed in other segments.

The effect is the same as if the instructions were executed in their original order, except that the

branch delay is removed.

It is up to the compiler to find useful instructions to put after the branch instruction. Failing that,

the compiler can insert no-op instructions.

Example: Consider five instructions:

Load from memory to R 1
Increment R 2

Add R3toR4

Subtract RS from R6
Branch to address X

In Fig. 5-J (a) the compiler inserts two no-op instructions after the branch. The branch address X

is transferred to PC in clock cycle 7. The fetching of the instruction at X is delayed by two clock
cycles by the no-op instructions.
The instruction at X starts the fetch phase at clock cycle 8 after the program counter PC has been

updated.

Clock cycles:

1. Load

2. Increment

3. Add

4, Subtract

5. Branch to X

6. No-operation

7. No-operation

8. Instruction in X

(a) Using no-operation instructions

Clock cycles:

l. Load

2. Increment

3. Branch to X

4. Add

5. Subtract

6. Instruction in X

(b) Rearranging the instructions

Figure 5-J: Example of delayed branch.

The program in Fig. 5-J (b) is rearranged by placing the add and subtract instructions after the

branch instruction instead of before as in the original program.
Inspection of the pipeline timing shows that PC is updated to the value of X in clock cycle 5, but

the add and subtract instructions are fetched from memory and executed in the proper sequence.

% The advantage of the delayed load approach is that the data dependency is taken care of by the
compiler rather than the hardware. This results in a simpler hardware segment since the segment

does not have to check if the content of the register being accessed is currently valid or not.

Vector Processing

++ Computers with vector processing capabilities are in demand in specialized applications. The
following are representative application areas where vector processing is of the utmost
importance.

* Long-range weather forecasting

Petroleum explorations

Seismic data analysis

Medical diagnosis

Artificial intelligence and expert systems
* Mapping the human genome

* Image processing

% Without sophisticated computers, many of the required computations cannot be completed

within a reasonable amount of time.

®,

¢ To achieve the required level of high performance it is necessary to utilize the fastest and most
reliable hardware and apply innovative procedures from vector and parallel processing

techniques.

Vector Operations:

* Many scientific problems require arithmetic operations on large arrays of numbers. These
numbers are usually formulated as vectors and matrices of floating-point numbers.

A vector is an ordered set of a one-dimensional array of data items. A vector V of length n is
represented as a row vector by V=[V1 V2 V3... V,4]. It may be represented as a column
vector if the data items are listed in a column.

A conventional sequential computer is capable of processing operands one at a time.
Consequently, operations on vectors must be broken down into single computations with

subscripted variables.
The element V; of vector V is written as V(I) and the index I refers to a memory address or
register where the number is stored.
To examine the difference between a conventional scalar processor and a vector processor,
consider the following Fortran DO loop:

DO 20 1=1,100

20 C(1)=B(1)+A(l)

This is a program for adding two vectors A and B of length 100 to produce a vector C . This

is implemented in machine language by the following sequence of operations.

Initialize

20 Read A(I)
Read B(lI)
Store C(1)=A(1)+B(I)
Increment I=1+1
If 1<=100 goto 20

Continue

This constitutes a program loop that reads a pair of operands from arrays A and B and performs

a floating-point addition.

A computer capable of vector processing eliminates the overhead associated with the time it

takes to fetch and execute the instructions in the program loop.

It allows operations to be specified with a single vector instruction of the form.

C(1:100) = A(1 : 100) + B(1 : 100)

The vector instruction includes the initial address of the operands, the length of the vectors,
and the operation to be performed, all in one composite instruction.

A possible instruction format for a vector instruction is shown in Fig. 5-K.

This is essentially a three-address instruction with three fields specifying the base address of

the operands and an additional field that gives the length of the data items in the vectors.

This assumes that the vector operands reside in memory.

Figure 5-K: Instruction format for vector processor

Operation Base address Base address Base address Vector
code source 1 source 2 destination length

Matrix Multiplication:

» Matrix multiplication is one of the most computational intensive operations performed in

computers with vector processors. The multiplication of two n x n matrices consists of n? inner

products.

» Ann x m matrix of numbers has n rows and m columns and may be considered as constituting

a set of n row vectors or a set of m column vectors.

Example: Consider the multiplication of two 3 x 3 matrices A and B.
an A A bu b bis Cu Ci2 Cp3
An An An| X |by bn bn|=|ca cn cxn
an A3 A4y by byn by G Cx2 O3

The product matrix Cis a 3 x 3 matrix whose elements are related to the elements of A and B
by the inner product.
The number in the first row and first column of matrix C is calculated by lettingi=1,j=1, to

obtain

iy = Ay by + apby + apby

The inner product calculation on a pipeline vector processor is shown in Fig. 5-K. The values

of A and B are either in memory or in processor registers.

The floating-point multiplier pipeline and the floating-point adder pipeline are assumed to have

four segments each.

All segment registers in the multiplier and adder are initialized to 0. Therefore, the output of

the adder is O for the first eight cycles until both pipes are full.

Aj and B; pairs are brought in and multiplied at a rate of one pair per cycle. After the first four

cycles, the products begin to be added to the output of the adder.

During the next four cycles 0 is added to the products entering the adder pipeline.

At the end of the eighth cycle, the first four products A1 B; through A4 B4 are in the four adder
segments, and the next four products, As Bs through Ag, Bg are in the multiplier segments.

At the beginning of the ninth cycle, the output of the adder is A1 B; and the output of the
multiplier is As Bs

Thus the ninth cycle starts the addition A1 Bi + As Bs in the adder pipeline. The tenth cycle
starts the addition A, Ba + A¢ Bs, and so on.

This pattern breaks down the summation into four sections as follows:

C=A B+ AsBs + AsBs + ApBjs + -+
+ A,B, + AgBs + AppBro + AwBiy + -
+ A;B; + A;B; + AyBy + AisBis + -+
+ AyBy + AyBg + A B + AjgBis + ** |

Multiplier Adder
pipeline pipeline

Figure 5-K: Pipeline for calculating an inner product

When there are no more product terms to be added, the system inserts four zeros into the
multiplier pipeline.

The adder pipeline will then have one partial product in each of its four segments,
corresponding to the four sums listed in the four rows in the above equation. The four partial

sums are then added to form the final sum.

Array Processors

An array processor is a processor that performs computations on large arrays of data. The term is
used to refer to two different types of processors.

An attached array processor is an auxiliary processor attached to a general-purpose computer.
It is intended to improve the performance of the host computer in specific numerical computation
tasks.

An SIMD array processor is a processor that has a single-instruction multiple-data organization.
It manipulates vector instructions by means of multiple functional units responding to a common

instruction.

Attached Array Processor:

An attached array processor is designed as a peripheral for a conventional host computer, and
its purpose is to enhance the performance of the computer by providing vector processing for
complex scientific applications.

It achieves high performance by means of parallel processing with multiple functional units.
It includes an arithmetic unit containing one or more pipelined floating point adders and
multipliers.

The array processor can be programmed by the user to accommodate a variety of complex
arithmetic problems.

Figure 5-L shows the interconnection of an attached array processor to a host computer.
The host computer is a general-purpose commercial computer and the attached processor is a

back-end machine driven by the host computer.

The array processor is connected through an input-output controller to the computer and the
computer treats it like an external interface.

The data for the attached processor are transferred from main memory to a local memory
through a high-speed bus. The general-purpose computer without the attached processor
serves the users that need conventional data processing.

The system with the attached processor satisfies the needs for complex arithmetic applications.

General-Purpose input-output | Attached array
computer interface processor

& S

High-speed memory to
Memory bus

Main memory Local memory

Figure 5-L: Attached array processor with host computer.

SIMD Array Processor:

An SIMD array processor is a computer with multiple processing units operating in parallel.

The processing units are synchronized to perform the same operation under the control of a

common control unit, thus providing a single instruction stream, multiple data stream (SIMD)
organization.
A general block diagram of an array processor is shown in Fig. 9-M. It contains a set of

identical processing elements (PEs), each having a local memory M.

Each processor element includes an ALU, a floating-point arithmetic unit, and working

registers. The master control unit controls the operations in the processor elements.

The main memory is used for storage of the program. The function of the master control unit
is to decode the instructions and determine how the instruction is to be executed.

Vector instructions are broadcast to all PEs simultaneously. Each PE uses operands stored in
its local memory. Vector operands are distributed to the local memories prior to the parallel

execution of the instruction.

Master control
unit

Main memory

Figure 5-M: SIMD array processor organization.

Example: Consider the vector addition C = A + B. The master control unit first stores the ith

components a; and bjof A and B in local memory M; fori=1, 2, 3...n.

* It then broadcasts the floating-point add instruction Cj = aj+ b to all PEs, causing the addition

to take place simultaneously.

The components of C; are stored in fixed locations in each local memory. This produces the

desired vector sum in one add cycle.

Masking schemes are used to control the status of each PE during the execution of vector
instructions. Each PE has a flag that is set when the PE is active and reset when the PE is
inactive.

This ensures that only those PEs that need to participate are active during the execution of the
instruction.

For example, suppose that the array processor contains a set of 64 PEs. 1f a vector length of
less than 64 data items is to be processed, the control unit selects the proper number of PEs to
be active. Vectors length of greater than 64 must be divided into 64-word portions by the

control unit.

Multi Processors

Characteristics of Multiprocessors:

A multiprocessor system is an interconnection of two or more CPUs with memory and

inputoutput equipment. The term "processor" In multiprocessor can mean either a central
processing unit (CPU) or an input-output processor (IOP).
However, a system with a single CPU and one or more 1IOPs is usually not included in the
definition of a multiprocessor system unless the IOP has computational facilities comparable to
a CPU.
As it is most commonly defined, a multiprocessor system implies the existence of multiple
CPUsgs, although usually there will be one or more 10Ps as well. Multiprocessors are classified
as multiple instruction stream, multiple data stream (MIMD) systems.
Multiprocessing improves the reliability of the system so that a failure or error in one part has
a limited effect on the rest of the system. If a fault causes one processor to fail, a second
processor can be assigned to perform the functions of the disabled processor.
Multiprocessing can improve performance by decomposing a program into parallel executable
tasks. This can be achieved in one of two ways.

» The user can explicitly declare that certain tasks of the program be executed in parallel.

This must be done prior to loading the program by specifying the parallel.

» The other, more efficient way is to provide a compiler with multiprocessor software that
can automatically detect parallelism in a user's program. The compiler checks for data
dependency in the program.

¢ Multi processors are classified by the way their memory is organized.

1. Tightly coupled multiprocessor System:

<~ A multiprocessor system with common shared memory is classified as a shared

memory or tightly coupled multiprocessor

<~ Tightly coupled multiprocessor systems contain multiple CPUs that are connected at the
bus level. These CPUs may have access to a central shared memory.

2. Loosely Coupled Multiprocessor System:

<~ A loosely coupled multiprocessor system is a type of multiprocessing where the
individual processors are configured with their own memory and are capable of

executing user and operating system instructions independent of each other

<~ Loosely coupled multiprocessor systems are also known as distributed memory, as the
processors do not share physical memory and have their own 1O channels.
Interconnection Structures

The interconnection between the components (CPUs and IOPs) can have different physical
configurations, depending on the number of transfer paths that are available between the processors

and memory in a shared memory system or among the processing elements in a loosely coupled

system.
There are several physical forms available for establishing an interconnection network.

Time-shared common bus
Multiport memory

Crossbar switch

Multistage switching network

Hypercube system

1. Time-shared common bus:

» A common-bus multiprocessor system consists of a number of processors connected through

a common path to a memory unit.
» A time-shared common bus for five processors is shown in Fig. 5-N. Only one processor can

communicate with the memory or another processor at any given time.

Memory unit

Figure5-N: Time-shared common bus organization.

Any other processor wishing to initiate a transfer must first determine the availability status
of the bus, and only after the bus becomes available can the processor address the destination
unit to initiate the transfer.

A command is issued to inform the destination unit what operation is to be performed. The
receiving unit recognizes its address in the bus and responds to the control signals from the
sender, after which the transfer is initiated.

A single common-bus system is restricted to one transfer at a time. This means that when one
processor is communicating with the memory, all other processors are either busy with
internal operations or must be idle waiting for the bus.

A more economical implementation of a dual bus structure is depicted in Fig. 5-O

Commaon
Shared
Memory

Local Bus

System
Bus
Contraller

CcPU

1oP

| SYSTEM BUS ‘

System
Bus
Controller

System
Bus
Controller

Fig 5-O: System bus structure for multi processors

Here we have a number of local buses each connected to its own local memory and to one or
more processors.

Each local bus may be connected to a CPU, an 10P, or any combination of processors. A
system bus controller links each local bus to a common system bus .

The I/O devices connected to the local IOP, as well as the local memory, are available to the
local processor.

The memory connected to the common system bus is shared by all processors. If an 10P is
connected directly to the system bus, the I/O devices attached to it may be made available to
all processors.

Only one processor can communicate with the shared memory and other common resources

through the system bus at any given time. The other processors are kept busy communicating

with their local memory and I/O devices.

2. Multiport memory:

» A multiport memory system employs separate buses between each memory module and each
CPU. This is shown in Fig. 5-P for four CPUs and four memory modules (MMs). Each
processor bus is connected to each memory module.

A processor bus consists of the address, data, and control lines required to communicate with

memory.

The memory module is said to have four ports and each port accommodates one of the buses.
The module must have internal control logic to determine which port will have access to

memory at any given time

Mermory Modules

il 2 M1 3

|

Figure 5-P: Multiport memory organization

The advantage of the multi port memory organization is the high transfer rate that can be

achieved because of the multiple paths between processors and memory.

The disadvantage is that it requires expensive memory control logic and a large number of cables

and connectors

3. Crossbar Switch:

» The crossbar switch organization consists of a number of cross points that are placed at
intersections between processor buses and memory module paths.
» Figure 5-Q shows a crossbar switch interconnection between four CPUs and four memory

modules.

» The small square in each cross point is a switch that determines the path from a processor to a

memory module. Each switch point has control logic to set up the transfer path between a

processor and memory.

Memory modules

Fig 5-Q: Crossbar switch.

data,address, and
control from CPU 1

data

" »

Multiplexers data,address, and
~address and control from CPU 2

arbitration
RW logic

data,address, and

memor control from CPU 3

enable

data,address, and
control from CPU 4

Figure 5-R: Block diagram of crossbar switch.

Figure 5-R shows the functional design of a crossbar switch connected to one memory module.
The circuit consists of multiplexers that select the address, and control from one CPU for
communication with the memory module.

Priority levels are established by the arbitration logic to select one CPU when two or more CPUs

attempt to access the same memory.

% Crossbar switch organization supports simultancous transfers from memory modules because there

is a separate path associated with each module. However, the hardware required to implement the

switch can become quite large and complex.

4. Multistage Switching Network:

» The basic component of a multistage network is a two-input, two-output, interchange switch.
As shown in Fig. 5-S.

» The 2 X 2 switch has two input labeled A and B, and two outputs, labeled 0 and 1. There are
control sign (not shown) associated with the switch that establish the interconnection between

the input and output terminals.

A connected to 0 A connected to 1

B connected to 0 B connected to 1

Figure 5-S: Operation of a 2 X 2 interchange switch.

» The switch has the capability connecting input A to either of the outputs. Terminal B of the
switch behaves in a similar fashion.
The switch also has the capability to arbitrate between conflicting requests. If inputs A and B
both request the same output terminal only one of them will be connected; the other will be
blocked.
Using the 2 x 2 switch as a building block, it is possible to build multistage network to control
the communication between a number of source and destinations. To see how this is done,

consider the binary tree shown Fig. 5-T.

4]

Figure 5-T: Binary tree with 2 X 2 switches.

» The two processors P1 and P2 are connected through switches to eight memory modules
marked in binary from 000 through 111. The path from source to a destination is determined
from the binary bits of the destination.

The first bit of the destination number determines the switch output in the first level. The
second bit specifies the output of the switch in the second level, and the third bit specifies the
output of the switch in the third level.

For example, to connect P1 to memory 101, it is necessary to form a path from P1 to output 1
in the first-level switch, output 0 in the second-level switch, and output 1 in the third-level

switch.

% Many different topologies have been proposed for multistage switching networks to control

processor-memory communication in a tightly coupled multiprocessor system or to control the

communication between the processing elements in a loosely coupled system. One such topology

is the omega switching network shown in Fig. 5-U.

8 X 8 Omega switching network:

In this configuration, there is exactly one path from each source to any particular destination.

Some request patterns, however, cannot be connected simultaneously.

For example, any two sources cannot be connected simultaneously to destinations 000 and 001.
A particular request is initiated in the switching network by the source, which sends a 3-bit pattern

representing the destination number.

As the binary pattern moves through the network, each level examines a different bit to determine

the 2 x 2 switch setting. Level 1 inspects the most significant bit. level 2 inspects the middle bit,

and level 3 inspects the least significant bit.

Fig. 5-U: 8 X 8 Omega switching network

In a tightly coupled multiprocessor system, the source is a processor and the destination is a
memory module.

The first pass through the network sets up the path. Succeeding passes are used to transfer the
address into memory and then transfer the data in either direction, depending on whether the

request is a read or a write.

In a loosely coupled multiprocessor system, both the source and destination are processing

elements. After the path is established, the source processor transfers a message to the destination

Processor.

5. Hypercube Interconnection:

The hypercube or binary n-cube multiprocessor structure is a loosely coupled system

n composed of N = 2 processors interconnected in an n —
dimension binary cube.

Each processor forms a node of the cube. Each processor has direct communication paths to n
other neighbor processors.

These paths correspond to the edges of the cube. There are 2" distinct n-bit binary addresses
that can be assigned to the processors.

Each processor address differs from that of each of its n neighbors by exactly one bit position.

Figure 5-V shows the hypercube structure for n =1, 2, and 3.

One-cube Two-<cube Three-cube

Figure 5-V: Hypercube structures forn=1,2 ,3.

A one-cube structure has n =1 and 2" = 2. It contains two processors interconnected by a single
path. A two-cube structure has n = 2 and 2" = 4. It contains four nodes interconnected as a
square.

A three-cube structure has eight nodes interconnected as a cube. An n -cube structure has 2"

nodes with a processor residing in each node.

Each node is assigned a binary address in such a way that the addresses of two neighbors differ

in exactly one bit position.

For example, the three neighbors of the node with address 100 in a three-cube structure are
000, 110, and 101.

Routing messages through an n-cube structure may take from one to n links from a source node

to a destination node.

For example, in a three-cube structure, node 000 can communicate directly with node 001. It
must cross at least two links to communicate with 011 (from 000 to 001 to 011 or from 000
to 010 to O11). It is necessary to go through at least three links to communicate from node
000 to node 111.
¢ A routing procedure can be developed by computing the exclusive-OR of the source node
address with the destination node address. The resulting binary value will have 1 bits
corresponding to the axes on which the two nodes differ. The message is then sent along
any one of the axes.
For example, in a three-cube structure, a message at 010 going to 001 produces an
exclusive-OR of the two addresses equal to 01 1 . The message can be sent along the

second axis to 000 and then through the third axis to 001.

Inter processor Arbitration

Computer systems contain a number of buses at various levels to facilitate the transfer of
information between components.

The CPU contains a number of internal buses for transferring information between processor
registers and ALU.

A memory bus consists of lines for transferring data, address, and read/write information. An
I/O bus is used to transfer information to and from input and output devices.

A bus that connects major components in a multiprocessor system, such as CPUs, 10Ps, and

memory, is called a system bus

Serial Arbitration Procedure:

» Arbitration procedures service all processor requests on the basis of established priorities. A

hardware bus priority resolving technique can be established by means of a serial or parallel
connection of the units requesting control of the system bus.

The serial priority resolving technique is obtained from a daisy-chain connection of bus
arbitration circuits similar to the priority interrupt logic.

The processors connected to the system bus are assigned priority according to their position

along the priority control line.

The device closest to the priority line is assigned the highest priority. When multiple devices
concurrently request the use of the bus, the device with the highest priority is granted access
to it.

Figure 5-W shows the daisy-chain connection of four arbiters.

It is assumed that each processor has its own bus arbiter logic with priority-in and priorityout
lines. The priority out (PO) of each arbiter is connected to the priority in (PI) of the next-

lower-priority arbiter.

Highest

Lowest

pri or ity
Bus
PI
arbiter 1

Pl

arbiter 2 |

PI

Bus

arbiter 3

Pl

priority

arbiter 4

| To next

PO

arbiter
—

l

l

l

Bus busy line

Figure 5-W: Serial (daisy-chain) arbitration

The PI of the highest-priority unit is maintained at a logic 1 value. The highest-priority unit
in the system will always receive access to the system bus when it requests it.

The PO output for a particular arbiter is equal to 1 if its P input is equal to 1 and the processor
associated with the arbiter logic is not requesting control of the bus.

This is the way that priority is passed to the next unit in the chain. If the processor requests
control of the bus and the corresponding arbiter finds its PI input equal to 1, it sets its PO
output to 0. Lower-priority arbiters receive a 0 in PI and generate a 0 in PO.

Thus the processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of

the system bus.

Parallel Arbitration Procedure(Logic):

* The parallel bus arbitration technique uses an external priority encoder and a decoder as

shown in Fig. 5-X.

Each bus arbiter in the parallel scheme has a bus request output line and a bus acknowledge
input line. Each arbiter enables the request line when its processor is requesting access to the
system bus.

The processor takes control of the bus if its acknowledge input line is enabled. The bus busy
line provides an orderly transfer of control, as in the daisy-chaining case

Figure 5-X shows the request lines from four arbiters going into a 4 x 2 priority encoder. The
output of the encoder generates a 2-bit code which represents the highest-priority unit among
those requesting the bus.

The 2-bit code from the encoder output drives a 2 x 4 decoder which enables the proper

acknowledge line to grant bus access to the highest-priority unit.

BREQ

Bus busy line

4
At

Priority encoder

Figure 5-X: Parallel arbitration.

¢ The bus priority-in BPRN and bus priority-out BPRO are used for a daisy-chain connection
of bus arbitration circuits.
¢ The bus busy signal BUSY is an open-collector output used to instruct all arbiters when the

bus is busy conducting a transfer.

Inter processor Communication and Synchronization

The various processors in a multiprocessor system must be provided with a facility for
communicating with each other. A communication path can be established through common
input-output channels.

In a shared memory multiprocessor system, the most common procedure is to set aside a

portion of memory that is accessible to all processors.
The primary use of the common memory is to act as a message center similar to a mailbox,
where each processor can leave messages for other processors and pick up messages intended

for it.

In the distributed operating system organization, the operating system routines are distributed

among the available processors. However, each particular operating system function is
assigned to only one processor at a time.

This type of organization is also referred to as a floating operating system since the routines
float from one processor to another and the execution of the routines may be assigned to
different processors at different times.

In a loosely coupled multiprocessor system the memory is distributed among the processors and there

is no shared memory for passing information. The communication between processors is by means of

message passing through I/O channels.

Inter processor Synchronization:

X/
°e

The instruction set of a multiprocessor contains basic instructions that are used to implement
communication and synchronization between cooperating processes.

Communication refers to the exchange of data between different processes.

For example, parameters passed to a procedure in a different processor constitute inter
processor communication. Synchronization refers to the special case where the data used to
communicate between processors is control information.

Synchronization is needed to enforce the correct sequence of processes and to ensure mutually
exclusive access to shared writable data.

Multiprocessor systems usually include various mechanisms to deal with the synchronization of

resources. The hardware mechanism is mutual exclusion have been developed.

Mutual Exclusion with a Semaphore:

>

Mutual exclusion must be provided in a multiprocessor system to enable one processor to
exclude or lock out access to a shared resource by other processors when it is in a critical
section.

A critical section is a program sequence that, once begun, must complete execution before
another processor accesses the same shared resource.

A binary variable called a semaphore is often used to indicate whether or not a processor is

executing a critical section. A semaphore is a software controlled flag that is stored in a

memory location that all processors can access.

» When the semaphore is equal to 1, it means that a processor is executing a critical program,

so that the shared memory is not available to other processors. When the semaphore is equal

to 0, the shared memory is available to any requesting processor.

Cache Coherence Problem:

The primary advantage of cache is its ability to reduce the average access time in
uniprocessors.

When the processor finds a word in cache during a read operation, the main memory is not
involved in the transfer.

If the operation is to write, there are two commonly used procedures to update memory. In
the write-through policy, both cache and main memory are updated with every write
operation. In the write-back policy, only the cache is updated and the location is marked so
that it can be copied later into main memory.

The same information may reside in a number of copies in some caches and main memory.
To ensure the ability of the system to execute memory operations correctly, the multiple

copies must be kept identical. This requirement imposes a cache coherence problem.

Conditions for Incoherence:

+¢ Cache coherence problems exist in multiprocessors with private caches because of the need to
share writable data. Read-only data can safely be replicated without cache coherence

enforcement mechanisms.

Example: Consider the three-processor configuration with private caches shown in Fig.5-Y.

X=52 Main memory

Figure 5-Y: Cache configuration after a load on X.

Sometime during the operation an element X from main memory is loaded into the three
processors, P1, P2, and P3¢ As a consequence, it is also copied into the private caches of the
three processors.

For simplicity, we assume that X contains the value of 52. The load on X to the three
processors results in consistent copies in the caches and main memory.

If one of the processors performs a store to X, the copies of X in the caches become
inconsistent. A load by the other processors will not return the latest value. Depending on the
memory update policy used in the cache, the main memory may also be inconsistent with

respect to the cache. This is shown in Fig. 5-Z.

| X =120 | Main memory

120 ’ [X =52 =52 | Caches

| Py ‘ Py I Processors

(a) With write-through cache policy

Main memory

120 i X =352 X =52 | Caches
Py | I P Processors

(b) With write-back cache policy

Figure 5-Z: Cache configuration after a store to X by processor P 1

» A store to X (of the value of 120) into the cache of processor P1 updates memory to the new
value in a write-through policy.
» A write-through policy maintains consistency between memory and the originating cache, but

the other two caches are inconsistent since they still hold the old value.

In a write-back policy, main memory is not updated at the time of the store. The copies in the
other two caches and main memory are inconsistent.
Memory is updated eventually when the modified data in the cache are copied back into

memory.
Solutions to the Cache Coherence Problem:

<~ A simple scheme is to disallow private caches for each processor and have a shared cache

memory associated with main memory. Every data access is made to the shared cache.

This method violates the principle of closeness of CPU to cache and increases the average
memory access time. In effect, this scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache to each processor. One

scheme that has been used allows only nonshared and read-only data to be stored in caches.

Such items are called cachable.

Shared writable data are noncachable. The compiler must tag data as either cachable or

noncachable, and the system hardware makes sure that only cachable data are stored in caches.

The noncachable data remain in main memory. This method restricts the type of data stored

in caches .

COMPUTER ORGANIZATION & ARCHITECTURE

moodbanao.net

Unit-1

Short Answer Questions

ok wdE

Differentiate Computer Organization and Architecture [4]

What are different types of computers? Mention their applications. [3]
Explain the stored program organization in detail. [5]

What are the types of micro operations? [3]

Discuss about logic micro operations. [4]

List out the typical logical and bit manipulation instructions. [3]

Long Answer Questions

N

© oo N

10.

11.

12.

Draw the block diagram of a digital computer and explain purpose of each part.[7]
Convert the following decimal numbers to binary: 1231, 673, 1998. [10]
Explain the following. [10]

(a) Register Transfer

(b) Input-Output and Interrupt
What is register transfer language? With suitable examples, explain the representation
of instructions in register transfer language and assembly language.[10]
A digital computer has common bus system for 16 registers of 32 bis each. The bus is
constructed with multiplexers. [10]

(a) How many selection input lines are there in each multiplexer?

(b) What types of multiplexers are needed?

(c) How many multiplexers are there in the bus?
Draw the bus system for four registers and explain. [8]
Design a 4-bit combinational decremental circuit using four full adders [8]
Explain in detail life cycle of an instruction. [10]
An 8-bit register contains the binary value 10011100. What is the register value after
an Arithmetic Shift Right? Starting from the initial number 10011100, determine the
register value after an arithmetic Shift Left, and state whether there is an overflow.[7]
Perform the arithmetic operation (+42)+(-13) and (-42)-(-13) in binary using signed
2’s complement representation for negative numbers [8]
Draw the flowchart for instruction cycle and explain. b) Explain the following
instructions: BUN, 1SZ, BSA, LDA, STA [10]
Briefly write about instruction codes.[10]

Unit-11

Short Answer Questions

NogakowhE

What is a control memory?[2]

Define microinstruction and microprogram.[2]

What is a control word? [3]

What is sequencer? Mention its functions. [3]

What are the advantages and disadvantages of micro programming?[2]

Write about the fetch routine in symbolic microinstructions. [3]

What must be the address field of the indexed addressing modes be to make it same as
a register indirect addressing mode instruction?[2]

Long Answer Questions

1.

Explain the microprogram sequencer for control memory with neat diagram.(10)
Or

Draw block diagram of a control memory and the associated hardware needed for

selecting the next micro instruction address.[10]

2.
moodbanao.ne

o gk w

10.
11.
12.

How many time does the control unit refers to memory when it fetches and executes
sn indirect addressing mode instruction if the instruction is,

a. A computational type requiring an operand from memory

b. A branch type
Explain in detail various addressing modes with examples[10]
Define microinstruction and microprogram. Write an example for microprogram. [8]
What is hardwired control? Discuss its advantages and disadvantages.[5]
Make a comparison between hardwired control unit and microprogrammed control
unit. Is it possible to have a hardwired control unit associated with control
memory?[10]
A computer has 16 registers, an ALU with 32 operations and a shifter with eight
operations, all connected to a common bus i) Formulate a control word for a micro
operation ii) Specify the number of bits in each field of control word and give a
general encoding scheme[10]
What are addressing modes? Explain the various addressing modes with
examples.[10]
What are the common fields found in the instruction format? Explain various
instruction formats based on types of CPU Organization.[10]

Or

Discuss various types of instruction formats.[5]
Explain in detail about data transfer instructions[5]
Explain various Data Manipulation instructions with examples[10]
What are the basic differences among a branch instruction, a call subroutine
instruction, and program interrupt?[10]

Unit-111

Short Answer Questions

carwhE

What are the data types?[3]

Why should the sign of remainder is same as the sign of the dividend[3]

Convert the following decimal numbers to binary:1231;673 and 1998.[3]

Show that there can be no mantissa overflow after a multiplication operation.[3]
Convert the number (7654)8 to hexadecimal.[3]

What is the difference between the restoring and non-restoring method of division?[4]

Long Answer Questions

el N =

o o

7.

8.
9.
10.

Distinguish between fixed point representation and floating point representation. [10]
Explain Floating point representation in decimal number system.[5]

Explain various number systems and number representations used in system.[10]
Represent the number (+46.5)10 as a floating-point binary number with 24 bits. The
normalized fraction mantissa has 16 bits and the exponent has 8 bits(10)

Explain the subtraction operation with signed 2’s complement representation.[5]
Derive an algorithm in flowchart form for adding and subtracting two fixed point
binary numbers when negative numbers are in signed 2’s complement
representation.[10]

Multiplicand B=10111, Multiplier A= 10011. Explain the hardware implementation
and algorithm for multiply operation. [10]

With an example explain the Booth’s Multiplication Algorithm[10]

Dividend A=01110 Divisor B=10001. Explain flowchart for divide operation.[10]
Explain the decimal addition operation with a neat diagram|[5]

Unit-1V

moodbanao.net
Short Answer Questions

1. What is the difference between isolated I/0O and memory mapped I/0? What are the

advantages and disadvantages of each? [3]
2. Define source -initiated transfer using handshaking.[4]
3. Write about first-in and first-out buffers in asynchronous data transfer[3]
4. Differentiate between static and dynamic memory|[3]
Or
Compare between static RAMs and dynamic RAMSs.[3]
5. Differentiate logical and physical address representations[3]

Long Answer Questions

What is meant by handshaking? Explain with neat diagram. [8]

Explain programmed 1/O in detail.[5]

Demonstrate how communication proceeds between CPU and IOP. [10]
Explain in detail various 1/0 modes of transfer.[10]

okrwdPE

it’s working. [10]

Explain about Prioritized Interrupts and interrupts cycle.[10]

Explain daisy chain priority interrupt. [8]

Explain associative memory hardware organization in detail.[10]

Explain the cache memory mapping techniques.[5]
Or

Explain various mapping procedures of cache memory with an example.[10]
Or

Explain Cache memory organization with Associative mapping? Explain how it

improves the memory access time? [10]

10. Explain the functionalities of memory management hardware. [8]

11. What is the need for replacement? Explain various cache block replacement

algorithms.[10]
12. Draw and Explain about the virtual memory organization. [8]

© o~

Unit-V

Short Answer Questions

o PE

What is pipelining? Draw the diagram for instruction pipelining. [3]

Write a short note on Array Processor.[3]

What is cache coherence? [3]

Write down the expressions for speedup factor in a pipelined architecture. [3]

Long Answer Questions

Ao E

o

Write the major characteristics of RISC processors.[5]
Discuss various conflicts that may arise in pipelining. How are they resolved? [5]
What is parallel processing? What are its advantages? Explain[10]
Draw a space time diagram for a four segment pipeline showing the time it takes to
process six tasks and explain.[5]
Explain the concept of pipelining for floating - point addition and subtraction. [10]
. Explain briefly about arithmetic pipeline with neat diagram.[10]
or

Illustrate arithmetic pipeline with an example. [10]
. Explain the implementation of instruction pipelining. [10]
. Derive speedup achieved by a pipeline unit over a non-pipeline unit [10]

Show internal configuration of a DMA controller diagrammatically and explain how

9. Wrjte about i) No-operations ii) instruction reordering iii) annulling [10]
mOOdbanaﬂlne onstruct a diagram for 4X4 Omega switching network. Show the switch setting
required to connect input 3 to output 1.(8)
11. Consider the multiplication of 40X40 matrices using a vector processor.
a. How many product terms are there in each inner product and how many inner
products must be evaluated.
b. How many multiply and add operations are needed to calculate product matrix.
12. Explain in brief Inter-Processor Communication.[10]
13. Draw and explain the structure of general purpose multicomputer. [5]
14. Discuss the characteristics of Multi-Processors.[10]
15. Give a brief note on mutual exclusion with a semaphore. [8]
16. What is cache coherence problem? Discuss about different cache coherence
approaches. [10]
Or
What is cache coherence problem? Explain various protocols to handle it.[10]

