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UNIT-4 

1. Transaction Concept 

A transaction is a unit of program execution that accesses and possibly updates 

various data items. Usually, a transaction is initiated by a user program written in a high-level 

data- manipulation language or programming language. 

Ex: SQL, COBOL, C, C++, or Java 
 

Where it is delimited by statements (or function calls) of the form begin transaction 

and end transaction. The transaction consists of all operations executed between the begin 

transaction and end transaction. 

To ensure integrity of the data, we require that the database system maintain the 

following properties of the transactions: 

Atomicity: Either all operations of the transaction are reflected properly in the database, or 

none are. 

Consistency: Execution of a transaction in isolation (that is, with no other transaction 

executing concurrently) preserves the consistency of the database. 

Isolation: Even though multiple transactions may execute concurrently, the system 

guarantees that, for every pair of transactions Ti and Tj, it appears to Ti that either Tj finished  

execution before Ti started, or Tj started execution after Ti finished. Thus, each transaction is 

unaware of other transactions executing concurrently in the system. 

Durability: After a transaction completes successfully, the changes it has made to the 

database persist, even if there are system failures. 

These properties are often called the ACID properties; the acronym is derived from 

the first letter of each of the four properties. 

Transactions access data using two operations: 
 

• read(X), which transfers the data item X from the database to a local buffer belonging to the 

transaction that executed the read operation. 

• write(X), which transfers the data item X from the local buffer of the transaction that 

executed the write back to the database. 

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can 

be defined as: 
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Let us now consider each of the ACID requirements. (For ease of presentation, we consider 

them in an order different from the order A-C-I-D). 

Consistency: The consistency requirement here is that the sum of A and B be unchanged by 

the execution of the transaction. Without the consistency requirement, money could be 

created or destroyed by the transaction! It can be verified easily that, if the database is 

consistent before an execution of the transaction, the database remains consistent after the 

execution of the transaction. Ensuring consistency for an individual transaction is the 

responsibility of the application programmer who codes the transaction. 

Atomicity: Suppose that, just before the execution of transaction Ti the values of accounts A 

and B are $1000 and $2000, respectively. Now suppose that, during the execution of 

transaction Ti, a failure occurs that prevents Ti from completing its execution successfully. 

Examples of such failures include power failures, hardware failures, and software errors. 

Further, suppose that the failure happened after the write(A)operation but before the 

write(B)operation. In this case, the values of accounts A and B reflected in the database are 

$950 and $2000. The system destroyed $50 as a result of this failure. In particular, we note 

that the sum A + B is no longer preserved. 

Thus, because of the failure, the state of the system no longer reflects a real state of 

the world that the database is supposed to capture. We term such a state an inconsistent state. 

We must ensure that such inconsistencies are not visible in a database system. Note, however, 

that the system must at some point be in an inconsistent state. Even if transaction Ti is 

executed to completion, there exists a point at which the value of account A is $950 and the 

value of account B is $2000, which is clearly an inconsistent state. This state, however, is 

eventually replaced by the consistent state where the value of account A is $950, and the 

value of account B is $2050. Thus, if the transaction never started or was guaranteed to 

complete, such an inconsistent state would not be visible except during the execution of the 

transaction. That is the reason for the atomicity requirement: If the atomicity property is 

present, all actions of the transaction are reflected in the database, or none are. 

The basic idea behind ensuring atomicity is this: The database system keeps track (on 

disk) of the old values of any data on which a transaction performs a write, and, if the 

transaction does not complete its execution, the database system restores the old values to 

make it appear as though the transaction never executed. 

Ensuring atomicity is the responsibility of the database system itself; specifically, it is 

handled by a component called the transaction-management component. 

Durability: Once the execution of the transaction completes successfully, and the user who 

initiated the transaction has been notified that the transfer of funds has taken place, it must be 
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the case that no system failure will result in a loss of data corresponding to this transfer of 

funds. The durability property guarantees that, once a transaction completes successfully, all 

the updates that it carried out on the database persist, even if there is a system failure after the 

transaction completes execution. We assume for now that a failure of the computer system 

may result in loss of data in main memory, but data written to disk are never lost. We can 

guarantee durability by ensuring that either 

1. The updates carried out by the transaction have been written to disk before the transaction 

completes. 

2. Information about the updates carried out by the transaction and written to disk is sufficient  

to enable the database to reconstruct the updates when the database system is restarted after 

the failure. 

Ensuring durability is the responsibility of a component of the database system called the 

recovery-management component. 

Isolation: Even if the consistency and atomicity properties are ensured for each transaction, 

if several transactions are executed concurrently, their operations may interleave in some 

undesirable way, resulting in an inconsistent state. 

Ex: the database is temporarily inconsistent while the transaction to transfer funds from A to 

B is executing, with the deducted total written to A and the increased total yet to be written to 

B. If a second concurrently running transaction reads A and B at this intermediate point and 

computes A+B, it will observe an inconsistent value. Furthermore, if this second transaction 

then performs updates on A and B based on the inconsistent values that it read, the database 

may be left in an inconsistent state even after both transactions have completed. 

A way to avoid the problem of concurrently executing transactions is to execute 

transactions serially—that is, one after the other. However, concurrent execution of 

transactions provides significant performance benefits, as they allow multiple transactions to 

execute concurrently. The isolation property of a transaction ensures that the concurrent 

execution of transactions results in a system state that is equivalent to a state that could have 

been obtained had these transactions executed one at a time in some order. Ensuring the 

isolation property is the responsibility of a component of the database system called the 

concurrency-control component. 

2. Transaction State 

Aborted: A transaction may not always complete its execution successfully. Such a 

transaction is termed aborted. If we are to ensure the atomicity property, an aborted 

transaction must have no effect on the state of the database. 

Rolledback: The aborted transaction made to the database must be undone. Once the changes 

caused by an aborted transaction have been undone, we say that the transaction has been 

rolled back. It is part of the responsibility of the recovery scheme to manage transaction 

aborts. 
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Committed: A transaction that completes its execution successfully is said to be committed. 

A committed transaction that has performed updates transforms the database into a new 

consistent state, which must persist even if there is a system failure. 

Once a transaction has committed, we cannot undo its effects by aborting it. The only 

way to undo the effects of a committed transaction is to execute a compensating transaction. 

For instance, if a transaction added $20 to an account, the compensating transaction would 

subtract $20 from the account. However, it is not always possible to create such a 

compensating transaction. Therefore, the responsibility of writing and executing a 

compensating transaction is left to the user, and is not handled by the database system. 

Transaction State Diagram: A simple abstract transaction model is shown in fig below: 
 

A transaction must be in one of the following states: 
 

• Active, the initial state; the transaction stays in this state while it is executing 
 

• Partially committed, after the final statement has been executed 
 

• Failed, after the discovery that normal execution can no longer proceed 
 

• Aborted, after the transaction has been rolled back and the database has been restored to its 

state prior to the start of the transaction 

• Committed, after successful completion. 
 

A transaction has committed only if it has entered the committed state. Similarly, we say that 

a transaction has aborted only if it has entered the aborted state. A transaction is said to have 

terminated if has either committed or aborted. 
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A transaction starts in the active state. When it finishes its final statement, it enters the 

partially committed state. At this point, the transaction has completed its execution, but it is 

still possible that it may have to be aborted, since the actual output may still be temporarily 

residing in main memory, and thus a hardware failure may preclude its successful 

completion. 

The database system then writes out enough information to disk that, even in the 

event of a failure, the updates performed by the transaction can be re-created when the system 

restarts after the failure. When the last of this information is written out, the transaction enters 

the committed state. As mentioned earlier, we assume for now that failures do not result in 

loss of data on disk. 

A transaction enters the failed state after the system determines that the transaction 

can no longer proceed with its normal execution (for example, because of hardware or logical 

errors). Such a transaction must be rolled back. Then, it enters the aborted state. At this point, 

the system has two options: 

 It can restart the transaction, but only if the transaction was aborted as a result of 

some hardware or software error that was not created through the internal logic of the 

transaction. A restarted transaction is considered to be a new transaction. 

 It can kill the transaction. It usually does so because of some internal logical error that 

can be corrected only by rewriting the application program, or because the input was 

bad, or because the desired data were not found in the database. 

 

 

3. Implementation of Atomicity and Durability 

The recovery-management component of a database system can support atomicity and 

durability by a variety of schemes. We first consider a simple, but extremely inefficient, 

scheme called the shadow copy scheme. This scheme, which is based on making copies of the 

database, called shadow copies, assumes that only one transaction is active at a time. The 

scheme also assumes that the database is simply a file on disk. A pointer called db-pointer is 

maintained on disk; it points to the current copy of the database. 

In the shadow-copy scheme, a transaction that wants to update the database first 

creates a complete copy of the database. All updates are done on the new database copy, 

leaving the original copy, the shadow copy, untouched. If at any point the transaction has to 

be aborted, the system merely deletes the new copy. The old copy of the database has not 

been affected. If the transaction completes, it is committed as follows. First, the operating 

system is asked to make sure that all pages of the new copy of the database have been written 

out to disk. (Unix systems use the flush command for this purpose.) After the operating 

system has written all the pages to disk, the database system updates the pointer db-pointer to 

point to the new copy of the database; the new copy then becomes the current copy of the 

database. The old copy of the database is then deleted. The following Figure depicts the 

scheme, showing the database state before and after the update. 
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The transaction is said to have been committed at the point where the updated dbpointer is 

written to disk. 

We now consider how the technique handles transaction and system failures. First, 

consider transaction failure. If the transaction fails at any time before db-pointer is updated, 

the old contents of the database are not affected. We can abort the transaction by just deleting 

the new copy of the database. Once the transaction has been committed, all the updates that it 

performed are in the database pointed to by dbpointer. Thus, either all updates of the 

transaction are reflected, or none of the effects are reflected, regardless of transaction failure. 

Now consider the issue of system failure. Suppose that the system fails at any time 

before the updated db-pointer is written to disk. Then, when the system restarts, it will read 

db-pointer and will thus see the original contents of the database, and none of the effects of 

the transaction will be visible on the database. Next, suppose that the system fails after db- 

pointer has been updated on disk. Before the pointer is updated, all updated pages of the new 

copy of the database were written to disk. Again, we assume that, once a file is written to 

disk, its contents will not be damaged even if there is a system failure. Therefore, when the 

system restarts, it will read db-pointer and will thus see the contents of the database after all 

the updates performed by the transaction. 

The implementation actually depends on the write to db-pointer being atomic; that is, 

either all its bytes are written or none of its bytes are written. If some of the bytes of the 

pointer were updated by the write, but others were not, the pointer is meaningless, and neither 

old nor new versions of the database may be found when the system restarts. Luckily, disk 

systems provide atomic updates to entire blocks, or least to a disk sector. In other words, the 

disk system guarantees that it will update db-pointer atomically, as long as we make sure that 

db-pointer lies entirely in a single sector, which we can ensure by storing db-pointer at the 
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beginning of a block. Thus, the atomicity and durability properties of transactions are ensured 

by the shadow-copy implementation of the recovery-management component. 

Unfortunately, this implementation is extremely inefficient in the context of large 

databases, since executing a single transaction requires copying the entire database. 

Furthermore, the implementation does not allow transactions to execute concurrently with 

one another. There are practical ways of implementing atomicity and durability that are much 

less expensive and more powerful. 

 

 

4. Concurrent Executions 

Transaction-processing systems usually allow multiple transactions to run 

concurrently. Allowing multiple transactions to update data concurrently causes several 

complications with consistency of the data. However, there are two good reasons for allowing 

concurrency: 

• Improved throughput and resource utilization: A transaction consists of many steps. Some 

involve I/O activity; others involve CPU activity. The CPU and the disks in a computer 

system can operate in parallel. Therefore, I/O activity can be done in parallel with processing 

at the CPU. The parallelism of the CPU and the I/O system can therefore be exploited to run 

multiple transactions in parallel. While a read or write on behalf of one transaction is in 

progress on one disk, another transaction can be running in the CPU, while another disk may 

be executing a read or write on behalf of a third transaction. All of this increases the 

throughput of the system—that is, the number of transactions executed in a given amount of 

time. Correspondingly, the processor and disk utilization also increase; in other words, the 

processor and disk spend less time idle, or not performing any useful work. 

• Reduced waiting time: There may be a mix of transactions running on a system, some short 

and some long. If transactions run serially, a short transaction may have to wait for a 

preceding long transaction to complete, which can lead to unpredictable delays in running a 

transaction. If the transactions are operating on different parts of the database, it is better to 

let them run concurrently, sharing the CPU cycles and disk accesses among them. Concurrent 

execution reduces the unpredictable delays in running transactions. Moreover, it also reduces 

the average response time: the average time for a transaction to be completed after it has been 

submitted. 

The motivation for using concurrent execution in a database is essentially the same as 

the motivation for using multiprogramming in an operating system. 

The database system must control the interaction among the concurrent transactions to 

prevent them from destroying the consistency of the database. It does so through a variety of 

mechanisms called concurrency-control schemes. 

Consider again the simplified banking system, which has several accounts, and a set of 

transactions that access and update those accounts. Let T1 and T2 be two transactions that 
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transfer funds from one account to another. Transaction T1 transfers $50 from account A to 

account B. It is defined as: 

 

 

 

 
Transaction T2 transfers 10 percent of the balance from account A to account B. It is defined 

as: 
 

 
Suppose the current values of accounts A and B are $1000 and $2000, respectively. Suppose 

also that the two transactions are executed one at a time in the order T1followed by T2.This 

execution sequence appears in Figure below. In the figure, the sequence of instruction steps is 

in chronological order from top to bottom, with instructions of T1 appearing in the left 

column and instructions of T2 appearing in the right column. The final values of accounts A 

and B, after the execution in Figure below, takes place, are $855 and $2145, respectively. 

Thus, the total amount of money in accounts A and B—that is, the sum A + B—is preserved 

after the execution of both transactions. 
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Similarly, if the transactions are executed one at a time in the order T2 followed by T1, then 

the corresponding execution sequence is that of Figure below. Again, as expected, the sum A 

+ B is preserved, and the final values of accounts A and B are $850 and $2150, respectively. 
 

The execution sequences just described are called schedules. They represent the 

chronological order in which instructions are executed in the system. Clearly, a schedule for a 

set of transactions must consist of all instructions of those transactions, and must preserve the 

order in which the instructions appear in each individual transaction. 
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Ex: In transaction T1, the instruction write(A) must appear before the instruction read(B), in 

any valid schedule. In the following discussion, we shall refer to the first execution sequence 

(T1 followed by T2) as schedule 1, and to the second execution sequence (T2 followed by 

T1)as schedule2. 

These schedules are serial: Each serial schedule consists of a sequence of instructions from 

various transactions, where the instructions belonging to one single transaction appear 

together in that schedule. Thus, for a set of n transactions, there exist n! different valid serial 

schedules. 

When the database system executes several transactions concurrently, the 

corresponding schedule no longer needs to be serial. If two transactions are running 

concurrently, the operating system may execute one transaction for a little while, then 

perform a context switch, execute the second transaction for some time, and then switch back 

to the first transaction for some time, and so on. With multiple transactions, the CPU time is 

shared among all the transactions. 

 

 
In general, it is not possible to predict exactly how many instructions of a transaction will be 

executed before the CPU switches to another transaction. Thus, the number of possible 

schedules for a set of n transactions is much larger than n!. 

One possible schedule appears in Figure below. After this execution takes place, we arrive at 

the same state as the one in which the transactions are executed serially in the order T1 

followed by T2. The sum A + B is indeed preserved. 
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Not all concurrent executions result in a correct state. To illustrate, consider the schedule of 

Figure below: 

 

 

After the execution of this schedule, we arrive at a state where the final values of accounts A 

and B are $950 and $2100, respectively. This final state is an inconsistent state, since we have 

gained $50 in the process of the concurrent execution. Indeed, the sum A + B is not preserved 

by the execution of the two transactions. 

If control of concurrent execution is left entirely to the operating system, many possible 

schedules, including ones that leave the database in an inconsistent state, such as the one just 

described, are possible. It is the job of the database system to ensure that any schedule that 

gets executed will leave the database in a consistent state. The concurrency-control 

component of the database system carries out this task. 

 

 

5. Serializability 

The database system must control concurrent execution of transactions, to ensure that 

the database state remains consistent. Before we examine how the database system can carry 

out this task, we must first understand which schedules will ensure consistency, and which 

schedules will not. Since transactions are programs, it is computationally difficult to 

determine exactly what operations a transaction performs and how operations of various 

transactions interact. For this reason, we shall not interpret the type of operations that a 

transaction can perform on a data item. Instead, we consider only two operations: read and 

write. We thus assume that, between a read (Q) instruction and a write (Q) instruction on a 

data item Q, a transaction may perform an arbitrary sequence of operations on the copy of Q 

that is residing in the local buffer of the transaction. Thus, the only significant operations of a 

transaction, from a scheduling point of view, are its read and write instructions. We shall 

therefore usually show only read and write instructions in schedules, as we do in schedule 3 

in Figure below. 
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Two forms of serializabilty are 
 

1. Conflict Serializabilty 

2. View Serializability. 
 

Conflict Serializability: 
 

Let us consider a schedule S in which there are two consecutive instructions Ii and Ij ,of 

transactions Ti and Tj, respectively (i ≠ j). If Ii and Ij refer to different data items, then we 

can swap Ii and Ij without affecting the results of any instruction in the schedule. However, if 

Ii and Ij refer to the same data item Q, then the order of the two steps may matter. Since we 

are dealing with only read and write instructions, there are four cases that we need to 

consider: 

1. Ii = read(Q), Ij = read(Q). The order of Ii and Ij does not matter, since the same value 

of Q is read by Ti and Tj, regardless of the order. 

2. Ii= read(Q), Ij= write(Q).If Ii comes before Ij, then Ti does not read the value of Q 

that is written by Tj in instruction Ij. If Ij comes before Ii, then Ti reads the value of Q 

that is written by Tj. Thus , the order of Ii and Ij matters. 

3. Ii= write(Q), Ij= read(Q). the order of Ii and Ij matters for reasons similar to those of 

the previous case. 

4. Ii= write(Q), Ij= write(Q). since both instructions are write operations, the order of 

these instructions does not affect either Ti or Tj. However, the value obtained by the 

next read(Q) instruction of S is affected, since the result of only the latter of the two 

write instructions is preserved in the database. If there is no other write(Q) instruction 

after Ii and Ij in S, then the order of Ii and Ij directly affects the final value of Q in the 

database state that results from schedule S. 

Thus, only in the case where both Ii and Ij are read instructions does the relative order of their 

execution not matter. 
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We say that Ii and Ij conflict if they are operations by different transactions on the 

same data item, and at least one of these instructions is a write operation. To illustrate the 

concept of conflicting instructions, we consider schedule 3, in Fig above. The write(A) 

instruction of T1 conflicts with the read(A) instruction of T2. However, the write(A) 

instruction of T2 does not conflict with the read(B) instruction of T1, because the two 

instructions access different data items. 

Let Ii and Ij be consecutive instructions of a schedule S. If Ii and Ij are instructions of 

different transactions and Ii and Ij do not conflict, then we can swap the order of Ii and Ij to 

produce a new schedule S’. We expect S to be equivalent to S’. Since all instructions appear 

in the same order in both schedules except for Ii and Ij, whose order does not matter. 

Since the write (A) instruction of Tin schedule 3 does not conflict with the read (B) 

instruction of T1, we can swap these instructions to generate an equivalent schedule, schedule 

5,shown in Figure below. 

 

 

 

 

 

Regardless of the initial system state, schedules 3 and 5 both produce the same final system 

state. We continue to swap nonconflicting instructions: 

 Swap the read(B) instruction of T1 with the read(A) instruction of T2 
. 

 Swap the write(B) instruction of T1 with the write(A) instruction of T2 

. 

 Swap the write(B) instruction of T1 with the read(A) instruction of T2. 
 

 

The final result of these swaps, schedule 6 of Figure below, is a serial schedule. 
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This equivalence implies that, regardless of the initial system state, schedule 3 will produce 

the same final state as will some serial schedule. 

If a schedule S can be transformed into a schedule S’ by a series of swaps of non conflicting 

instructions, we say that S and S’ are conflict equivalent. 

The concept of conflict equivalence leads to the concept of conflict serializability. We say 

that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule. 

Finally, consider schedule 7 of Figure below; it consists of only the significant operations 

(that is, the read and write)of transactions T3 and T4. This schedule is not conflict 

serializable, since it is not equivalent to either the serial schedule <T3,T4> or the serial 

schedule <T4,T3>. It is possible to have two schedules that produce the same outcome, but 

that are not conflict equivalent. 

 

 

 
View Serializability: 

 

Consider two schedules S and S’ , where the same set of transactions participates in 

both schedules. The schedules S and S ’are said to be view equivalent if three conditions are 

met: 

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then 

transaction Ti must, in schedule S , also read the initial value of Q.  

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that value 

was produced by a write(Q) operation executed by transaction Tj, then the read(Q) operation 
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of transaction Ti must, in schedule S value of Q that was produced by the same write(Q) 

operation of transaction Tj. 

3. For each data item Q, the transaction (if any) that performs the final write(Q) operation in 

schedule S must perform the final write(Q)operation in schedule S’. 

Conditions 1 and 2 ensure that each transaction reads the same values in both 

schedules and, therefore, performs the same computation. Condition 3, coupled with 

conditions 1 and 2, ensures that both schedules result in the same final system state. 

In our previous examples, schedule 1 is not view equivalent to schedule 2, since, in 

schedule 1, the value of account A read by transaction T2 was produced by T1, whereas this 

case does not hold in schedule 2. However, schedule 1 is view equivalent to schedule 3, 

because the values of account A and B read by transaction T2 were produced by T1 in both 

schedules. 

The concept of view equivalence leads to the concept of view serializability. We say that a 

schedule S is view serializable if it is view equivalent to a serial schedule. As an illustration, 

suppose that we augment schedule 7 with transaction T6,and obtain schedule 9 in Figure 

below: 
 

Schedule 9 is view serializable. Indeed, it is view equivalent to the serial schedule 

<T3,T4,T6>, since the one read(Q) instruction reads the initial value of Q in both schedules, 

and T6 performs the final write of Q in both schedules. 

Every conflict-serializable schedule is also view serializable, but there are 

viewserializable schedules that are not conflict serializable. Indeed, schedule 9 is not conflict  

serializable, since every pair of consecutive instructions conflicts, and, thus, no swapping of 

instructions is possible. 

Observe that, in schedule 9, transactions T4 and T6 perform write(Q)operation 

without having performed a read(Q) operation. Writes of this sort are called blind writes. 

Blind writes appear in any view-serializable schedule that is not conflict serializable. 
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6. Recoverability 

Now address the effect of transaction failures during concurrent execution. If 

Transaction Ti fails, for whatever reason, we need to undo the effect of this transaction to 

ensure the atomicity property of the transaction. In a system that allows concurrent 

execution, it is necessary also to ensure that any transaction Tj that is dependent on Ti 

(that is, Tj has read data written by Ti) is also aborted. To achieve this surety, we need to 

place restrictions on the type of schedules permitted in the system. 

Recoverable Schedules: 
 

Consider schedule 11 in Figure below: 
 
 

 

in which T9 is a transaction that performs only one instruction: read(A). Suppose that 

the system allows T9 to commit immediately after executing the read(A) instruction. 

Thus, T9commits before T8 does. Now suppose that T8 fails before it commits. Since T9 

has read the value of data item A written by T8 ,we must abort T9 to ensure transaction 

atomicity. However, T9 has already committed and cannot be aborted. Thus, we have a 

situation where it is impossible to recover correctly from the failure of T8. 

Schedule 11, with the commit happening immediately after the read(A) instruction, is 

an example of a nonrecoverable schedule, which should not be allowed. Most database 

system require that all schedules be recoverable. A recoverable schedule is one where, for 

each pair of transactions Ti and T j such that T reads a data item previously written by Ti , 

the commit operation of Ti appears before the commit operation of Tj. 

Cascadeless Schedules 
 

Even if a schedule is recoverable, to recover correctly from the failure of a transaction 

Ti, we may have to roll back several transactions. Such situations occur if transactions have 

read data written by Ti. As an illustration, consider the partial schedule of fig below: 

moodbanao.net



Database Management systems 

17 

 

 

 

 
 

Transaction T10 writes a value of A that is read by transaction T11. Transaction T11 writes a 

values of A that is tead by instrction T12, suppose tht at this point, T10 fails. T10 must be 

rolled back. Since T11 is dependent on T10, T11 must be rolled back. Since T12 is dependent 

on T11, T12 must be rolled back. This phenonmenon, in which a single transaction failure 

leads to a series of transaction Rollbacks, is called Cascading Rollback. 

Cascading rollback is undesirable, since it leads to the undoing of a significant amount 

of work. It is desirable to restrict the schedules to those where cascading rollbacks cannot 

occur. Such schedules are called cascadeless schedules. Formally, a cascadeless schedule is 

one where, for each pair of transactions Ti such that Tj reads a data item previously written 

by Ti , the commit operation of Ti appears before the read operation of T j. It is easy to verify 

that every cascadeless schedule is also recoverable. 

 

 

7. Implementation of Isolation 

There are various concurrency-control schemes that we can use to ensure that, even 

when multiple transactions are executed concurrently, only acceptable schedules are 

generated, regardless of how the operating-system time-shares resources (such as CPU time) 

among the transactions. As a trivial example of a concurrency-control scheme, consider this 

scheme: 

A transaction acquires a lock on the entire database before it starts and releases the 

lock after it has committed. While a transaction holds a lock, no other transaction is allowed 

to acquire the lock, and all must therefore wait for the lock to be released. As a result of the 

locking policy, only one transaction can execute at a time. Therefore, only serial schedules 

are generated. These are trivially serializable, and it is easy to verify that they are cascadeless 

as well. 

A concurrency-control scheme such as this one leads to poor performance, since it 

forces transactions to wait for preceding transactions to finish before they can start. In other 

words, it provides a poor degree of concurrency. concurrent execution has several 

performance benefits. The goal of concurrency-control schemes is to provide a high degree of 
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concurrency, while ensuring that all schedules that can be generated are conflict or view 

serializable, and are cascadeless. 

 

 

8.Testing for Serializability 

We now present a simple and efficient method for determining conflict serializability 

of a schedule. Consider a schedule S. We construct a directed graph, called a precedence 

graph,fromS. This graph consists of a pair G =(V, E), where V is a set of vertices and E is a 

set of edges. The set of vertices consists of all the transactions participating in the schedule. 

The set of edges consists of all edges Ti →Tj for which one of three conditions holds: 

1. Ti executes write(Q) before Tj executes read(Q). 

2. Ti executes read(Q) before Tj executes write(Q). 

3. Ti executes write(Q) before Tj executes write(Q). 
 

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S’ equivalent 

to S, must appear before Tj. 

Ex: The precedence graph for schedule 1 in Figure(a) below a contains the single edge T1→ 

T2, since all the instructions of T1 are executed before the first instruction of T2 is executed. 

Similarly, Figure(b) shows the precedence graph for schedule 2 with the single edge T2→ 

T1, since all the instructions of T2 are executed before the first instruction of T1 is executed. 

 
 

 
The precedence graph for schedule 4 appears in Figure below: 

 

 

 
It contains the edge T1 →T2, because T1 executes read(A)before T2 executes write(A). It 

also contains the edge T2→ T1,becauseT2 executes read(B) before T1executes write(B). If 

the precedence graph for S has a cycle, then schedule S is not conflict serializable.If the graph 

contains no cycles, then the schedule S is conflict serializable. 
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A serializability order of the transactions can be obtained through topological sorting, 

which determines a linear order consistent with the partial order of the precedence graph. 

There are, in general, several possible linear orders that can be obtained through a topological 

sorting. For example, the graph of Figure(a) has the two acceptable linear orderings shown in 

Figures(b) and (c). 
 

Thus, to test for conflict serializability, we need to construct the precedence graph and to 

invoke a cycle-detection algorithm. Cycle-detection algorithms, such as those based on 

depth-first search, require on the order of n2operations, where n is the number of vertices in 

the graph (that is, the number of transactions). Thus, we have a practical scheme for 

determining conflict serializability. 

Testing for view serializability is rather complicated. In fact, it has been shown that 

the problem of testing for view serializability is itself NP-complete. Thus, almost certainly 

there exists no efficient algorithm to test for view serializability. 
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9. Lock-Based Protocols 

One way to ensure serializability is to require that data items be accessed in a 

mutually exclusive manner; that is, while one transaction is accessing a data item, no other 

transaction can modify that data item. The most common method used to implement this 

requirement is to allow a transaction to access a data item only if it is currently holding a lock 

on that item. 

Locks 
 

There are various modes in which a data item may be locked. In this section, we 

restrict our attention to two modes: 

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then 

Ti can read, but cannot write, Q. 

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item 

Q, then Ti can both read and write Q. 

We require that every transaction request a lock in an appropriate mode on data item 

Q, depending on the types of operations that it will perform on Q. The transaction makes the 

request to the concurrency-control manager. The transaction can proceed with the operation 

only after the concurrency-control manager grants the lock to the transaction. 

Given a set of lock modes, we can define a compatibility function on them as follows. 

Let A and B represent arbitrary lock modes. Suppose that a transaction Ti requests a lock of 

mode A on item Q on which transaction Tj (Ti ≠ Tj) currently holds a lock of mode B. If 

transaction Ti can be granted a lock on Q immediately, in spite of the presence of the mode B 

lock, then we say mode A is compatible with mode B. Such a function can be represented 

conveniently by a matrix. The compatibility relation between the two modes of locking 

discussed in this section appears in the matrix comp of Figure below: 

 

 
An element comp(A, B) of the matrix has the value true if and only if mode A is 

compatible with mode B. Note that shared mode is compatible with shared mode, but not 

with exclusive mode. At any time, several shared-mode locks can be held simultaneously (by 

different transactions) on a particular data item. A subsequent exclusive-mode lock request 

has to wait until the currently held shared-mode locks are released. 
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A transaction requests a shared lock on data item Q by executing the lock-S(Q) 

instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q) 

instruction. A transaction can unlock a data item Q by the unlock(Q) instruction. 

To access a data item, transaction Ti must first lock that item. If the data item is 

already locked by another transaction in incompatible mode, the control manager will not 

grant the lock until all incompatible locks held by other transactions have been released. 

Thus, Ti is made to wait until all incompatible locks held by other transactions have been 

released. 

Transaction Ti may unlock a data item that it had locked at some earlier point. Note 

that a transaction must hold a lock on a data item as long as it accesses that item. Moreover, 

for a transaction to unlock a data item immediately after its final access of that data item is 

not always desirable, since serializability may not be ensured. 

Ex: Let A and B be two accounts that are accessed by transactions T1 and T2.Transaction T1 

transfers $50 from account B to account A. Transaction T2 displays the total amount of 

money in accounts A and B—that is, the sum A + B ( transactions are shown in fig below). 
 

Suppose that the values of accounts A and B are $100 and $200, respectively. If these two 

transactions are executed serially, either in the order T1, T2 or the order T2,T1, then 

transaction T2 will display the value $300. If, however, these transactions are executed 

concurrently, then schedule 1, in Figure below is possible. In this case, transaction T2 

displays $250, which is incorrect. The reason for this mistake is that the transaction T1 

unlocked data item B too early, as a result of which T2 saw an inconsistent state. 
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Suppose now that unlocking is delayed to the end of the transaction. Transaction T3 

corresponds to T1 with unlocking delayed. Transaction T4 corresponds to T2 with unlocking 

delayed (Figure below). 

 

 

 
Locking can lead to an undesirable situation. Consider the partial schedule of Figure below 

for T3 and T4: 
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SinceT3 is holding an exclusive-mode lock on B and T4 is requesting a shared-mode 

lock on B, T3 is waiting for T4 to unlock. Similarly, since T4 is holding a shared-mode lock 

on A and T3 is requesting an exclusive-mode lock on A, T3 is waiting for T4 to unlock A. 

Thus, we have arrived at state where neither of these transactions can ever proceed with its 

normal execution. This situation is called deadlock. When deadlock occurs, the system must 

roll back one of the two transactions. Once a transaction has been rolled back, the data items 

that were locked by that transaction are unlocked. These data items are then available to the 

other transaction, which can continue with its execution. 

We shall require that each transaction in the system follow a set of rules, called a 

locking protocol, indicating when a transaction may lock and unlock each of the data items. 

Locking protocols restrict the number of possible schedules. The set of all such schedules is a 

proper subset of all possible serializable schedules. We shall present several locking 

protocols that allow only conflict-serializable schedules. 

Let { T0,T1,…..Tn} be a set of transactions participating in a schedule S. We say that  

Ti precedes Tj in S, written Ti → Tj has held lock mode A on Q, and Ti has held lock mode 

B on Q later, ,and Tj has held lock mode B on Q later, and comp(A,B)=false. If Ti → Tj, then 

that precedence implies that in any equivalent serial schedule, must appear before Tj. 

We say that a schedule S is legal under a given locking protocol if S is a possible 

schedule for a set of transactions that follow the rules of the locking protocol. We say that a 

locking protocol ensures conflict serializability if and only if all legal schedules are conflict 

serializable; in other words, for all legal schedules the associated → relation is acyclic. 

Granting of Locks 
 

When a transaction requests a lock on a data item in a particular mode, and no other 

transaction has a lock on the same data item in a conflicting mode, the lock can be granted. 

However, care must be taken to avoid the following scenario. Suppose a transaction T2 has a 

shared-mode lock on a data item, and another transaction T1 requests an exclusive-mode lock 

on the data item. Clearly, T1 has to wait for T2 to release the shared-mode lock. Meanwhile, 
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a transaction T3 may request a shared-mode lock on the same data item. The lock request is 

compatible with the lock granted to T2,so T3 may be granted the shared-mode lock. At this 

point T3 may release the lock, but still T1 has to wait for T2 to finish. But again, there may 

be a new transaction T4 that requests a shared-mode lock on the same data item, and is 

granted the lock before T4 releases it. In fact, it is possible that there is a sequence of 

transactions that each requests a shared-mode lock on the data item, and each transaction 

releases the lock a short while after it is granted, but T1 never gets the exclusive-mode lock 

on the data item. The transaction T1 may never make progress, and is said to be starved. 

We can avoid starvation of transactions by granting locks in the following manner: When a 

transaction Ti requests a lock on a data item Q in a particular mode M, the concurrency- 

control manager grants the lock provided that 

1. There is no other other transaction holding a lock on Q in a mode that conflicts with M. 
 

2. There is no other transaction that is waiting for a lock on Q, and that made its lock request 

before T. 

Thus, a lock request will never get blocked by a lock request that is made later. 
 

The Two-Phase Locking Protocol 
 

One protocol that ensures serializability is the two-phase locking protocol. This 

protocol requires that each transaction issue lock and unlock requests in two phases: 

1. Growing phase. A transaction may obtain locks, but may not release any lock. 
 

2. Shrinking phase. A transaction may release locks, but may not obtain any new locks. 
 

Initially, a transaction is in the growing phase. The transaction acquires locks as 

needed. Once the transaction releases a lock, it enters the shrinking phase, and it can issue no 

more lock requests. For example, transactions T3 and T4 are two phase. On the other hand, 

transactions T1 and T2 are not two phase. Note that the unlock instructions do not need to 

appear at the end of the transaction. For example, in the case of transaction T3,we could 

move the unlock(B) instruction to just after the lock-X(A) instruction, and still retain the two- 

phase locking property. 

Two-phase locking does not ensure freedom from deadlock. Observe that transactions 

T3 and T4 are two phase, but, in schedule 2 (Figure above), they are deadlocked. in addition 

to being serializable, schedules should be cascadeless. Cascading rollback may occur under 

two-phase locking. As an illustration, consider the partial schedule of Figure below. 
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Each transaction observes the two-phase locking protocol, but the failure of T5 after the 

read(A) step of T7 leads to cascading rollback of T6 and T7. 

Strict Two-phase Locking: Cascading rollbacks can be avoided by a modification of two- 

phase locking called the strict two-phase locking protocol. This protocol requires not only 

that locking be two phase, but also that all exclusive-mode locks taken by a transaction be 

held until that transaction commits. This requirement ensures that any data written by an 

uncommitted transaction are locked in exclusive mode until the transaction commits, 

preventing any other transaction from reading the data. 

Rigorous Two-phase Locking: Another variant of two-phase locking is the rigorous two- 

phase locking protocol, which requires that all locks be held until the transaction commits. 

We can easily verify that, with rigorous two-phase locking, transactions can be serialized in 

the order in which they commit. Most database systems implement either strict or rigorous 

two-phase locking. 

Consider the following two transactions, for which we have shown only some of the 

significant read and write operations: 

 

 

 
 

If we employ the teo-phase locking protocol, then T8 must loak a1 in exclusive mode. 

Therefore, any concurrent execution of both transactions amounts to a serial execution. 
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Notice, however, that T8 needs an exclusive lock on a only at the end of its execution, when 

it writes a1.Thus, if T8 could initially lock a1 in shared mode, and then could later change the 

lock to exclusive mode, we could get more concurrency, since T8 and T9 could access a1 and 

a2 simultaneously. 

This observation leads us to a refinement of the basic two-phase locking protocol, in 

which lock conversions are allowed. We shall provide a mechanism for upgrading a shared 

lock to an exclusive lock, and downgrading an exclusive lock to a shared lock. We denote 

conversion from shared to exclusive modes by upgrade, and from exclusive to shared by 

downgrade. Lock conversion cannot be allowed arbitrarily. Rather, upgrading can take place 

in only the growing phase, whereas downgrading can take place in only the shrinking phase. 

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are 

used extensively in commercial database systems. A simple but widely used scheme 

automatically generates the appropriate lock and unlock instructions for a transaction, on the 

basis of read and write requests from the transaction: 

 When a transaction Ti issues a read(Q) operation, the system issues a 

lock-S(Q) instruction followed by the read(Q) instruction. 

 When Ti issues a write(Q) operation, the system checks to see whether 

Ti already holds a shared lock on Q. If it does, then the system issues an upgrade(Q) 

instruction, followed by the write(Q) instruction. Otherwise, the system issues a lock- 

X(Q) instruction, followed by the write(Q) instruction. 

 All locks obtained by a transaction are unlocked after that transaction 

commits or aborts. 

Implementation of Locking 
 

A lock manager can be implemented as a process that receives messages from 

transactions and sends messages in reply. The lock-manager process replies to lock-request 

messages with lock-grant messages, or with messages requesting rollback of the transaction 

(in case of deadlocks). Unlock messages require only an acknowledgment in response, but  

may result in a grant message to another waiting transaction. 

The lock manager uses this data structure: For each data item that is currently locked, 

it maintains a linked list of records, one for each request, in the order in which the requests 

arrived. It uses a hash table, indexed on the name of a data item, to find the linked list (if any) 

for a data item; this table is called the lock table. Each record of the linked list for a data item 

notes which transaction made the request, and what lock mode it requested. The record also 

notes if the request has currently been granted. The following fig shows example of a lock 

table. 
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The table contains locks for five different data items, I4, I7, I23, I44, and I912. The lock table 

uses overflow chaining, so there is a linked list of data items for each entry in the lock table. 

There is also a list of transactions that have been granted locks, or are waiting for locks, for 

each of the data items. Granted locks are the filled-in (black) rectangles, while waiting 

requests are the empty rectangles. We have omitted the lock mode to keep the figure simple. 

It can be seen, for example, that T23 has been granted locks on I912 and I7, and is waiting for 

a lock on I4. Although the figure does not show it, the lock table should also maintain an 

index on transaction identifiers, so that it is possible to determine efficiently the set of locks 

held by a given transaction. 

The lock manager processes requests this way: 
 

 When a lock request message arrives, it adds a record to the end of the linked list for 

the data item, if the linked list is present. Otherwise it creates a new linked list, 

containing only the record for the request. It always grants the first lock request on a 

data item. But if the transaction requests a lock on an item on which a lock has 

already been granted, the lock manager grants the request only if it is compatible with 

all earlier requests, and all earlier requests have been granted already. Otherwise the 

request has to wait. 

 When the lock manager receives an unlock message from a transaction, it deletes the 

record for that data item in the linked list corresponding to that transaction. It tests the 

record that follows, if any, as described in the previous paragraph, to see if that 
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request can now be granted. If it can, the lock manager grants that request, and 

processes the record following it, if any, similarly, and so on. 

 If a transaction aborts, the lock manager deletes any waiting request made by the 

transaction. Once the database system has taken appropriate actions to undo the 

transaction, it releases all locks held by the aborted transaction. 

This algorithm guarantees freedom from starvation for lock requests, since a request can 

never be granted while a request received earlier is waiting to be granted. 

Graph-Based Protocols 
 

The two-phase locking protocol is both necessary and sufficient for ensuring 

serializability in the absence of information concerning the manner in which data items are 

accessed. But, if we wish to develop protocols that are not two phase, we need additional 

information on how each transaction will access the database. There are various models that 

can give us the additional information, each differing in the amount of information provided. 

The simplest model requires that we have prior knowledge about the order in which the 

database items will be accessed. Given such information, it is possible to construct locking 

protocols that are not two phase, but that, nevertheless, ensure conflict serializability. 

To acquire such prior knowledge, we impose a partial ordering → on the set D = {d1,d2.,….. 

dn} of all data items. If di → dj , then any transaction accessing both di and dj must access di 

before accessing dj. This partial ordering may be the result of either the logical or the 

physical organization of the data, or it may be imposed solely for the purpose of concurrency 

control. 

The partial ordering implies that the set D may now be viewed as a directed acyclic graph, 

called a database graph. For the sake of simplicity, we will restrict our attention to only those 

graphs that are rooted trees. We will present a simple protocol, called the tree protocol, which 

is restricted to employ only exclusive locks. In the tree protocol, the only lock instruction 

allowed is lock-X. Each transaction Ti can lock a data item at most once, and must observe 

the following rules: 

1. The first lock by Ti may be on any data item. 
 

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is currently locked 

by Ti. 

3. Data items may be unlocked at any time. 
 

4. A data item that has been locked and unlocked by Ti cannot subsequently be relocked by 

Ti 

All schedules that are legal under the tree protocol are conflict serializable. 

To illustrate this protocol, consider the database graph of Figure below: 
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The following four transactions follow the tree protocol on this graph. We show only the 

lock and unlock instructions: 

 

 

One possible schedule in which these four transactions participated appears Figure below. 

Note that, during its execution, transaction T10 holds locks on two disjoint subtrees. 
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Observe that the schedule of Figure above is conflict serializable. It can be shown not only 

that the tree protocol ensures conflict serializability, but also that this protocol ensures 

freedom from deadlock. 

The tree protocol in Figure above does not ensure recoverability and cascadelessness. To 

ensure recoverability and cascadelessness, the protocol can be modified to not permit release 

of exclusive locks until the end of the transaction. Holding exclusive locks until the end of 

the transaction reduces concurrency. Here is an alternative that improves concurrency, but 

ensures only recoverability: For each data item with an uncommitted write we record which 

transaction performed the last write to the data item. Whenever a transaction Ti performs a 

read of an uncommitted data item, we record a commit dependency of Ti on the transaction 

that performed the last write to the data item. Transaction Ti is then not permitted to commit  

until the commit of all transactions on which it has a commit dependency. If any of these 

transactions aborts, Ti must also be aborted. 

Advantages: 
 

The tree-locking protocol has two advantages over the two-phase locking protocol 
 

 It is deadlock-free, so no rollbacks are required. 

  Unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times, 

and to an increase in concurrency. 
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Disadvantages: 
 

However, the protocol has the disadvantage that, in some cases, 
 

 A transaction may have to lock data items that it does not access. For example, a 

transaction that needs. 

 

 

10. Timestamp-Based Protocols 

Another method for determining the serializability order is to select an ordering 

among transactions in advance. The most common method for doing so is to use a timestamp- 

ordering scheme. 

Timestamps 
 

With each transaction Ti in the system, we associate a unique fixed timestamp, 

denoted by TS(Ti). This timestamp is assigned by the database system before the transaction 

Ti starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new 

transaction Tj enters the system, then TS(Ti ) < TS(Tj). There are two simple methods for 

implementing this scheme: 

1. Use the value of the system clock as the timestamp; that is, a transaction’s timestamp is 

equal to the value of the clock when the transaction enters the system. 

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, 

a transaction’s timestamp is equal to the value of the counter when the transaction enters the 

system. 

The timestamps of the transactions determine the serializability order. Thus, if TS(Ti) 

< TS(Tj), then the system must ensure that the produced schedule is equivalent to a serial 

schedule in which transaction Ti appears before transaction Tj. To implement this scheme, 

we associate with each data item Q two timestamp values: 

• W-timestamp(Q) denotes the largest timestamp of any transaction that executed write(Q) 

successfully. 

• R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q) 

successfully. 

These timestamps are updated whenever a new read(Q)orwrite(Q) instruction is 

executed. 

The Timestamp-Ordering Protocol 
 

The timestamp-ordering protocol ensures that any conflicting read and write 

operations are executed in timestamp order. This protocol operates as follows: 
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1. Suppose that transaction Ti issues read(Q). 
 

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already 

overwritten. Hence, the read operation is rejected, and Ti is rolled back. 

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and 

Rtimestamp(Q) is set to the maximum of R-timestamp(Q)andTS(T). 

2. Suppose that transaction Ti issues write(Q). 
 

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed 

previously, and the system assumed that that value would never be produced. Hence, the 

system rejects the write operation and rolls Ti back. 

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. 

Hence, the system rejects this write operation and rolls Ti back. 

c. Otherwise, the system executes the write operation and sets W-time- 

stamp(Q)toTS(Ti). 

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of 

either a read or writes operation, the system assigns it a new timestamp and restarts it. 

To illustrate this protocol, we consider transactions T14 and T15 displays the contents 

of accounts A and B: 

 
 

 

Transaction T15 transfers $50 from account A to account B, and then displays the contents of 

both: 

 
 

 
In presenting schedules under the timestamp protocol, we shall assume that a transaction is 

assigned a timestamp immediately before its first instruction. Thus, in schedule3 of Figure 

below, TS(T14) < TS(T15), and the schedule is possible under the timestamp protocol. 
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The protocol can generate schedules that are not recoverable. However, it can be extended to 

make the schedules recoverable, in one of several ways: 

• Recoverability and cascadelessness can be ensured by performing all writes together at the 

end of the transaction. The writes must be atomic in the following sense: While the writes are 

in progress, no transaction is permitted to access any of the data items that have been written. 

• Recoverability and cascadelessness can also be guaranteed by using a limited form of 

locking, whereby reads of uncommitted items are postponed until the transaction that updated 

the item commits. 

• Recoverability alone can be ensured by tracking uncommitted writes, and allowing a 

transaction Ti to commit only after the commit of any transaction that wrote a value that Ti 

read. Commit dependencies can be used for this purpose. 

Thomas’ Write Rule 
 

We now present a modification to the timestamp-ordering protocol that allows greater 

potential concurrency than does the protocol. Let us consider schedule of Figure below and 

apply the timestamp-ordering protocol. 

 
 

 

Since T16 starts before T17, we shall assume that TS(T16) < TS(T17). The read(Q) operation 

of T16 succeeds, as does the write(Q) operation of T16 attempts its write(Q)operation, we 

find that TS(T16) ) < W-timestamp(Q), since W-timestamp(Q)=TS(T17).Thus, the write(Q) 

by T16 is rejected and transaction T16 must be rolled back. 
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Although the rollback of T16 is required by the timestamp-ordering protocol, it is 

unnecessary. Since T 17 has already written Q, the value that T16 is attempting to write is 

one that will never need to be read. Any transaction Ti with TS(Ti)< TS(T17) that attempts a 

read(Q) will be rolled back, since TS(Ti)) < W-timestamp(Q). Any transaction Tj with TS(Tj) 

> TS(T17)must read the value of Q written by T17,ratherthan the value written by T16 
 

This observation leads to a modified version of the timestamp-ordering protocol in 

which obsolete write operations can be ignored under certain circumstances. The protocol 

rules for read operations remain unchanged. The protocol rules for write operations, however, 

are slightly different from the timestamp-ordering protocol. The modification to the 

timestamp-ordering protocol, called Thomas’ write rule, is this: Suppose that transaction Ti 

issues write(Q). 

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was 

previously needed, and it had been assumed that the value would never be produced. Hence, 

the system rejects the write operation and rolls Ti back. 

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. 

Hence, this write operation can be ignored. 

3. Otherwise, the system executes the write operation and sets W-timestamp(Q) to 

TS(Ti). 
 

The difference between time-stamp protocol and Thomas write protocol lies in the second 

rule. The time stamp ordering protocol requires Ti is rolled back if Ti issues write(Q) and 

TS(Ti) < W-timestamp(Q). however, here in those case where TS(Ti)≥ R- timestamp(Q). we 

ignore the obsolete write. 

 

 

11. Validation-Based Protocols 

A concurrency-control scheme imposes overhead of code execution and possible 

delay of transactions. It may be better to use an alternative scheme that imposes less 

overhead. A difficulty in reducing the overhead is that we do not know in advance which 

transactions will be involved in a conflict. To gain that knowledge, we need a scheme for  

monitoring the system. 

We assume that each transaction Ti executes in two or three different phases in its 

lifetime, depending on whether it is a read-only or an update transaction. The phases are, in 

order: 

1. Read phase. During this phase, the system executes transaction Ti It reads the values of the 

various data items and stores them in variables local to Ti It performs all write operations on 

temporary local variables, without updates of the actual database. 

moodbanao.net



Database Management systems 

35 

 

 

2. Validation phase. Transaction Ti performs a validation test to determine whether it can 

copy to the database the temporary local variables that hold the results of write operations 

without causing a violation of serializability. 

3. Write phase. If transaction Ti succeeds in validation (step 2), then the system applies the 

actual updates to the database. Otherwise, the system rolls back Ti 

Each transaction must go through the three phases in the order shown. However, all three 

phases of concurrently executing transactions can be interleaved. To perform the validation 

test, we need to know when the various phases of transactions Ti took place. We shall, 

therefore, associate three different timestamps with transaction Ti 

1. Start(Ti), the time when Ti started its execution. 
 

2. Validation(Ti),the time when Ti finished its read phase and started its validation phase. 
 

3. Finish(Ti),the time when Ti finished its write phase. 
 

We determine the serializability order by the timestamp-ordering technique, using the value 

of the timestamp Validation(Ti). Thus, the value TS(Ti) = Validation(Tj) and, if TS(Tj) < 

TS(Tk), then any produced schedule must be equivalent to a serial schedule in which 

transaction Tj appears before transaction Tk. The reason we have chosen Validation(Ti),  

rather than Start(Ti), as the timestamp of transaction Ti is that we can expect faster response 

time provided that conflict rates among transactions are indeed low. 

The validation test for transaction Tj requires that, for all transactions Ti with TS(Ti) < 

TS(Tj), one of the following two conditions must hold: 

1. Finish(Ti) < Start(Tj). Since Ti completes its execution before Tj started, the serializability 

order is indeed maintained. 

2. The set of data items written by Ti does not intersect with the set of data items read by Tj 

,and Ti completes its write phase before Tj starts its validation phase (Start(Tj) < Finish(Ti) < 

Validation(Tj)). This condition ensures that the writes of Ti and Tj do not overlap. Since the 

writes of Ti do not affect the read of Tj , and since Tj cannot affect the read of Ti the 

serializability order is indeed maintained. 

As an illustration, consider transactions T14 and T15 shown below: 
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Suppose that TS(T14)< TS(T15). Then, the validation phase succeeds in the above schedule 

shown in Figure. Note that the writes to the actual variables are performed only after the 

validation phase of T15.Thus, T14 reads the old values of B and A, and this schedule is 

serializable. 

The validation scheme automatically guards against cascading rollbacks, since the 

actual writes take place only after the transaction issuing the write has committed. However, 

there is a possibility of starvation of long transactions, due to a sequence of conflicting short 

transactions that cause repeated restarts of the long transaction. To avoid starvation, 

conflicting transactions must be temporarily blocked, to enable the long transaction to finish. 

This validation scheme is called the optimistic concurrency control scheme since transactions 

execute optimistically, assuming they will be able to finish execution and validate at the end. 

In contrast, locking and timestamp ordering are pessimistic in that they force a wait or a 

rollback whenever a conflict is detected, even though there is a chance that the schedule may 

be conflict serializable. 

 

 

12. Multiple Granularity 

In the concurrency-control schemes, each individual data item as the unit on which 

synchronization is performed. There are circumstances, however, where it would be 

advantageous to group several data items, and to treat them as one individual synchronization 

unit. 

Ex: if a transaction Ti needs to access the entire database, and a locking protocol is used, then 

Ti must lock each item in the database. Clearly, executing these locks is time consuming. It 

would be better if Ti could issue a single lock request to lock the entire database. On the other 

hand, if transaction Tj needs to access only a few data items, it should not be required to lock 

the entire database, since otherwise concurrency is lost. 

This mechanism allows the system to define multiple levels of granularity. We can 

make one by allowing data items to be of various sizes and defining a hierarchy of data 
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granularities, where the small granularities are nested within larger ones. Such a hierarchy 

can be represented graphically as a tree. Note that the tree that we describe here is 

significantly different from that used by the tree protocol. A nonleaf node of the multiple- 

granularity tree represents the data associated with its descendants. In the tree protocol, each 

node is an independent data item. 

As an illustration, consider the tree of Figure below, which consists of four levels of 

nodes. The highest level represents the entire database. Below it are nodes of type area; the 

database consists of exactly these areas. Each area in turn has nodes of type file as its 

children. Each area contains exactly those files that are its child nodes. No file is in more than 

one area. Finally, each file has nodes of type record. As before, the file consists of exactly 

those records that are its child nodes, and no record can be present in more than one file. 
 

Each node in the tree can be locked individually. As we did in the two-phase locking 

protocol, we shall use shared and exclusive lock modes. When a transaction locks a node, in 

either shared or exclusive mode, the transaction also has implicitly locked all the descendants 

of that node in the same lock mode. For example, if transaction Ti gets an explicit lock on file  

Fc of Figure above, in exclusive mode, then it has an implicit lock in exclusive mode all the 

records belonging to that file. It does not need to lock the individual records of Fc explicitly. 

Suppose that transaction Tj wishes to lock record rb6 of file Fb Since Ti has locked Fb 

explicitly, it follows that rb6 is also locked (implicitly). But, when Tj issues a lockrequest for 

rb6, rb6 is not explicitly locked! How does the system determine whether Tj can lock rb6? Tj 

must traverse the tree from the root to record rb6. If any node in that path is locked in an 

incompatible mode, then Tj must be delayed. 

Suppose now that transaction Tk wishes to lock the entire database. To do so, it 

simply must lock the root of the hierarchy. Note, however, that Tk should not succeed in 

locking the root node, since Ti is currently holding a lock on part of the tree (specifically, on 

file F). But how does the system determine if the root node can be locked? One possibility is 
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for it to search the entire tree. This solution, however, defeats the whole purpose of the 

multiple-granularity locking scheme. 

A more efficient way to gain this knowledge is to introduce a new class of lock 

modes, called intention lock modes. If a node is locked in an intention mode, explicit locking 

is being done at a lower level of the tree (that is, at a finer granularity). Intention locks are put  

on all the ancestors of a node before that node is locked explicitly. Thus, a transaction does 

not need to search the entire tree to determine whether it can lock a node successfully. 

A transaction wishing to lock a node—say, Q—must traverse a path in the tree from 

the root to Q. While traversing the tree, the transaction locks the various nodes in an intention 

mode. There is an intention mode associated with shared mode, and there is one with 

exclusive mode. If a node is locked in intention-shared (IS) mode, explicit locking is being 

done at a lower level of the tree, but with only shared-mode locks. Similarly, if a node is 

locked in intention-exclusive (IX) mode, then explicit locking is being done at a lower level, 

with exclusive-mode or shared-mode locks. Finally, if a node is locked in shared and 

intention-exclusive (SIX) mode, the subtree rooted by that node is locked explicitly in shared 

mode, and that explicit locking is being done at a lower level with exclusive-mode locks. The 

compatibility function for these lock modes is in Figure below: 
 

The multiple-granularity locking protocol, which ensures serializability, is this: 

Each transaction Ti can lock a node Q by following these rules: 

1. It must observe the lock-compatibility function 
 

2. It must lock the root of the tree first, and can lock it in any mode. 
 

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q locked in either 

IX or IS mode. 

4. It can lock a node Q in X, SIX,orIX mode only if it currently has the parent of Q locked in 

either IX or SIX mode. 

5. It can lock a node only if it has not previously unlocked any node (that is, T is two phase). 
 

6. It can unlock a node Q only if it currently has none of the children of Q locked. 

Observe that the multiple-granularity protocol requires that locks be acquired in topdown 
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(root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root) 

order. 

As an illustration of the protocol, consider the tree of Figure above and these transactions: 
 

• Suppose that transaction T18 reads record ra2 in file Fa. Then, T18 needs to lock the 

database, area A1 ,and Fa in IS mode (and in that order), and finally to lock ra2 in S mode. 

• Suppose that transaction T19 modifies record ra9 in file Fa. Then, T19 needs to lock the 

database, area A1,and file Fa in IX mode, and finally to lock ra2 in X mode. 

• Suppose that transaction T20 reads all the records in file Fa. Then, T20 needs to lock the 

database and area A1(in that order) in IS mode, and finally to lock Fa in S mode. 

• Suppose that transaction T21 reads the entire database. It can do so after locking the 

database in S mode. 

We note that transactions T18, T20,and T21 can access the database concurrently. 

Transaction T19 can execute concurrently with T18, but not with either T20 or T21. 

This protocol enhances concurrency and reduces lock overhead. It is particularly useful in 

applications that include a mix of 

• Short transactions that access only a few data items 

• Long transactions that produce reports from an entire file or set of files 
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13. Recovery and Atomicity 
 

Consider again our simplified banking system and transaction T that transfers $50 from account A 

to account B, with initial values of A and B being $1000 and $2000, respectively. Suppose that a 

system crash has occurred during the execution of Ti, after output(BA) has taken place, but before 

output(BB) was executed, where BA and BB denote the buffer blocks on which A and B reside. Since 

the memory contents were lost, we do not know the fate of the transaction; thus, we could invoke one 

of two possible recovery procedures: 

• Re-execute Ti: This procedure will result in the value of A becoming $900, rather than $950. 

Thus, the system enters an inconsistent state. 

• Do not re-execute Ti: The current system state has values of $950 and $2000 for A and B, 

respectively. Thus, the system enters an inconsistent state. 

In either case, the database is left in an inconsistent state, and thus this simple recovery scheme does 

not work. The reason for this difficulty is that we have modified the database without having 

assurance that the transaction will indeed commit. Our goal is to perform either all or no database 

modifications made by Ti. However, if Ti performed multiple database modifications, several output  

operations may be required, and a failure may occur after some of these modifications have been 

made, but before all of them are made. 

To achieve our goal of atomicity, we must first output information describing the modifications to 

stable storage, without modifying the database itself. 

14. Log-Based Recovery 

 

The most widely used structure for recording database modifications is the log. The log is a 

sequence of log records, recording all the update activities in the database. There are several types of 

log records. An update log record describes a single database write. It has these fields: 

• Transaction identifier is the unique identifier of the transaction that performed the write operation. 
 

• Data-item identifier is the unique identifier of the data item written. Typically, it is the location on 

disk of the data item. 

• Old value is the value of the data item prior to the write. 
 

• New value is the value that the data item will have after the write. 
 

Other special log records exist to record significant events during transaction processing, such 

as the start of a transaction and the commit or abort of a transaction. 

We denote the various types of log records as: 
 

• <Ti start>.Transaction Ti has started. 
 

• <Ti, Xj, V1, V2>.Transaction Ti has performed a write on data item Xj before the write, and will 

have value V12after the write. 

• <Ti commit>.Transaction Ti has committed. 
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• <Ti abort>.Transaction Ti has aborted. 
 

Whenever a transaction performs a write, it is essential that the log record for that write be 

created before the database is modified. Once a log record exists, we can output the modification to 

the database if that is desirable. Also, we have the ability to undo a modification that has already been 

output to the database. We undo it by using the old-value field in log records. For log records to be 

useful for recovery from system and disk failures, the log must reside in stable storage. For now, we 

assume that every log record is written to the end of the log on stable storage as soon as it is created. 

Deferred Database Modification 
 

The deferred-modification technique ensures transaction atomicity by recording all database 

modifications in the log, but deferring the execution of all write operations of a transaction until the 

transaction partially commits. Recall that a transaction is said to be partially committed once the final 

action of the transaction has been executed. The version of the deferred-modification technique that 

we describe in this section assumes that transactions are executed serially. 

When a transaction partially commits, the information on the log associated with the 

transaction is used in executing the deferred writes. If the system crashes before the transaction 

completes its execution, or if the transaction aborts, then the information on the log is simply ignored. 

The execution of transaction Ti proceeds as follows. Before Ti starts its execution, a record<Ti start> 

is written to the log. A write(X) operation by Ti results in the writing of a new record to the log.  

Finally, when <Ti commit> is written to the log. 

When transaction Ti partially commits, a record Ti partially commits, the records associated 

with it in the log are used in executing the deferred writes. Since a failure may occur while this 

updating is taking place, we must ensure that, before the start of these updates, all the log records are 

written out to stable storage. Once they have been written, the actual updating takes place, and the 

transaction enters the committed state. Observe that only the new value of the data item is required by 

the deferred modification technique. Thus, we can simplify the general update-log record structure 

that we saw in the previous section, by omitting the old-value field. 

To illustrate, reconsider our simplified banking system. Let T0   be a transaction that transfers $50 

from account A to account B: 

 

 
Let T1 be a transaction that withdraws $100 from account C: 

 

 
Suppose that these transactions are executed serially, in the order T0 followed by T1 and that the 

values of accounts A, B, and C before the execution took place were $1000, $2000, and $700, 

respectively. The portion of the log containing the relevant information on these two transactions 

appears in Figure below: 
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There are various orders in which the actual outputs can take place to both the database 

system and the log as a result of the execution of T0 and T1 .One such order appears in Figure below: 

 

 
Note that the value of A is changed in the database only after the record <T,A,950> has been placed 

in the log. Using the log, the system can handle any failure that results in the loss of information on 

volatile storage. The recovery scheme uses the following recovery procedure: 

• redo(Ti) sets the value of all data items updated by transaction Ti to the new values. 
 

The set of data items updated by Ti and their respective new values can be found in the log. The redo 

operation must be idempotent; that is, executing it several times must be equivalent to executing it 

once. This characteristic is required if we are to guarantee correct behavior even if a failure occurs 

during the recovery process. After a failure, the recovery subsystem consults the log to determine 

which transactions need to be redone. Transaction Ti needs to be redone if and only if the log contains 

both the record <Ti start> and the record <Ti commit>. Thus, if the system crashes after the 

transaction completes its execution, the recovery scheme uses the information in the log to restore the 

system to a previous consistent state after the transaction had completed. 

As an illustration, let us return to our banking example with transactions T0 executed one 

after the other in the order T1 followed by T1. Figure the log that results from the complete execution 

of T0 and T1 . Let us suppose that the system crashes before the completion of the transactions, so 

that we can see how the recovery technique restores the database to a consistent state. Assume that the 

crash occurs just after the log record for the step of 

write(B) 
 

transaction T0 has been written to stable storage. The log at the time of the crash appears in Figure(a) 

below. 
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When the system comes back up, no redo actions need to be taken, since no commit record appears in 

the log. The values of accounts A and B remain $1000 and $2000, respectively. The log records of the 

incomplete transaction T0 can be deleted from the log. 

Now, let us assume the crash comes just after the log record for the step of transaction T1 

write(C) 

has been written to stable storage. In this case, the log at the time of the crash is as in Figure(b). When 

the system comes back up, the operation redo(T0) is performed, since the record <T0 commit> 

appears in the log on the disk. After this operation is executed, the values of accounts A and B are 

$950 and $2050, respectively. The value of account C remains $700. As before, the log records of the 

incomplete transaction T1 can be deleted from the log. 

Finally, assume that a crash occurs just after the log record <T1 commit> is written to stable 

storage. The log at the time of this crash is as in Figure(c). When the system comes back up, two 

commit records are in the log: one for T0 and one for T1 . Therefore, the system must perform 

operations redo(T0 )and redo(T1) order in which their commit records appear in the log. After the 

system executes these operations, the values of accounts A, B, and C are $950, $2050, and $600, 

respectively. Finally, let us consider a case in which a second system crash occurs during recovery 

from the first crash. Some changes may have been made to the database as a result of the redo 

operations, but all changes may not have been made. When the system comes up after the second 

crash, recovery proceeds exactly as in the preceding examples. For each commit record <Ti commit> 

found in the log, the system performs the operation redo(Ti). In other words, it restarts the recovery 

actions from the beginning. Since redo writes values to the database independent of the values 

currently in the database, the result of a successful second attempt at redo is the same as though redo 

had succeeded the first time. 

Immediate Database Modification 
 

The immediate-modification technique allows database modifications to be output to the 

database while the transaction is still in the active state. Data modifications written by active 

transactions are called uncommitted modifications. In the event of a crash or a transaction failure, the 

system must use the old-value field of the log records to restore the modified data items to the value 

they had prior to the start of the transaction. The undo operation, described next, accomplishes this 

restoration. 

Before a transaction <Ti start> starts its execution, the system writes the record <Ti start> to the log. 

During its execution, any write(X)operation by Ti is preceded by the writing of the appropriate new 

update record to the log. When Ti partially commits, the system writes the record <Ti commit> to the 

log. 
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Since the information in the log is used in reconstructing the state of the database, we cannot allow the 

actual update to the database to take place before the corresponding log record is written out to stable 

storage. We therefore require that, before execution of an output(B) operation, the log records 

corresponding to B be written onto stable storage. 

As an illustration, let us reconsider our simplified banking system, with transactions T0 and T1 

executed one after the other in the order T0 followed by T1. The portion of the log containing the 

relevant information concerning these two transactions appears in Figure below: 

 
 

 

The following Figure shows one possible order in which the actual outputs took place in both the 

database system and the log as a result of the execution of T0 and T1. Notice that this order could not 

be obtained in the deferred-modification technique. 

Using the log, the system can handle any failure that does not result in the loss of information 

in nonvolatile storage. The recovery scheme uses two recovery procedures: 

• undo(Ti) restores the value of all data items updated by transaction Ti to the old values. 
 

• redo(Ti) sets the value of all data items updated by transaction Ti to the new values. 
 

The set of data items updated by Ti and their respective old and new values can be found in the log.  

The undo and redo operations must be idempotent to guarantee correct behaviour even if a failure 

occurs during the recovery process. After a failure has occurred, the recovery scheme consults the log 

to determine which transactions need to be redone, and which need to be undone: 

• Transaction Ti needs to be undone if the log contains the record <Ti start>, but does not contain the 

record <Ti commit>. 

• Transaction Ti needs to be redone if the log contains both the record <Ti start> and the record <Ti 

commit>. 

As an illustration, return to our banking example, with transaction T0 and T1 executed one 

after the other in the order T0 followed by T1. Suppose that the system crashes before the completion 

of the transactions. We shall consider three cases. The state of the logs for each of these cases appears 

in Figure below: 
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First, let us assume that the crash occurs just after the log record for the step of transaction T0 has 

been written to stable storage(fig a) 

write(B) 
 

When the system comes back up two recovery actions need to be taken. The operation undo(T1)must 

be performed, since the record <T1 start> appears in the log, but there is no record <T1 commit>.The 

operation redo(T1) must be performed, since the log contains both the record <T0 start> and the 

record <T0 commit>. At the end of the entire recovery procedure, the values of accounts A, B,andC 

are $950, $2050, and $700, respectively. Note that the undo(T1 ) operation is performed before the 

redo(T0). In this example, the same outcome would result if the order were reversed. However, the 

order of doing undo operations first, and then redo operations, is important for the recovery algorithm. 

Finally, let us assume that the crash occurs just after the log record 
 

<T1 commit> 
 

has been written to stable storage (Figure c). When the system comes back up, both T0 and T1 need to 

be redone, since the records <T0 start> and <T1 commit> appear in the log, as do the records <T1 

start> and <T1 commit>. After the system performs the recovery procedures redo(T0)and redo(T1), 

the values in accounts A, B, and C are $950, $2050, and $600, respectively. 

Checkpoints 
 

When a system failure occurs, we must consult the log to determine those transactions that 

need to be redone and those that need to be undone. In principle, we need to search the entire log to 

determine this information. There are two major difficulties with this approach: 

1. The search process is time consuming. 
 

2. Most of the transactions that, according to our algorithm, need to be redone have already 

written their updates into the database. Although redoing them will cause no harm, it will nevertheless 

cause recovery to take longer. 

To reduce these types of overhead, we introduce checkpoints. During execution, the system 

maintains the log. In addition, the system periodically performs checkpoints, which require the 

following sequence of actions to take place: 

1. Output onto stable storage all log records currently residing in main memory. 
 

2. Output to the disk all modified buffer blocks. 
 

3. Output onto stable storage a log record <checkpoint>. 
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Transactions are not allowed to perform any update actions, such as writing to a buffer block or 

writing a log record, while a checkpoint is in progress. The presence of a <checkpoint> record in the 

log allows the system to streamline its recovery procedure. Consider a transaction Ti that committed 

prior to the checkpoint. 

For such a transaction, the <Ti commit> record appears in the log before the <checkpoint> record. 

Any database modification made by Ti must have been written to the database either prior to the 

checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no need to perform a 

redo operation on Ti. 

This observation allows us to refine our previous recovery schemes. After a failure has 

occurred, the recovery scheme examines the log to determine the most recent transaction Ti that 

started executing before the most recent checkpoint took place. It can find such a transaction by 

searching the log backward, from the end of the log, until it finds the first <checkpoint> record (since 

we are searching backward, the record found is the final <checkpoint> record in the log); then it  

continues the search backward until it finds the next <Ti start> record. This record identifies a 

transaction Ti. 

Once the system has identified transaction Ti, the redo and undo operations needto be applied 

to only transaction Ti and all transactions Tj that started executing after transaction Ti. Let us denote 

these transactions by the set T. The remainder (earlier part) of the log can be ignored, and can be 

erased whenever desired. The exact recovery operations to be performed depend on the modification 

technique being used. For the immediate-modification technique, the recovery operations are: 

• For all transactions Tk in T that have no <Ti commit> record in the log, execute undo(Tk) 
 

• For all transactions Tk in T that have no <Tk commit> appears in the log, execute redo(Tk). 
 

Obviously, the undo operation does not need to be applied when the deferred-modification technique 

is being employed. 

As an illustration, consider the set of transactions {T0, T1,…….T100} executed in the order of the 

subscripts. Suppose that the most recent checkpoint took place during the execution of transaction 

T67. Thus, only transactions T67, T68,………..T100 need to be considered during the recovery 

scheme. Each of them needs to be redone if it has committed; otherwise, it needs to be undone. 

15. Recovery with Concurrent Transactions 
 

Regardless of the number of concurrent transactions, the system has a single disk buffer and a 

single log. All transactions share the buffer blocks. We allow immediate modification, and permit a 

buffer block to have data items updated by one or more transactions. 

 

 
 Interaction with Concurrency Control 

 

The recovery scheme depends greatly on the concurrency-control scheme that is used. To roll back a 

failed transaction, we must undo the updates performed by the transaction. Suppose that a transaction 

Ti has to be rolled back, and a data item Q that was updated by T0 has to be restored to its old value. 

Using the log-based schemes for recovery, we restore the value by using the undo information in a log 
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record. Suppose now that a second transaction T1 has performed yet another update on Q before T0 is 

rolled back. Then, the update performed by T1 will be lost if T0 is rolled back. 

Therefore, we require that, if a transaction T has updated a data item Q, no other transaction 

may update the same data item until T has committed or been rolled back. We can ensure this 

requirement easily by using strict two-phase locking—that is, two-phase locking with exclusive locks 

held until the end of the transaction. 

Transaction Rollback 
 

We roll back a failed transaction, Ti, by using the log. The system scans the log backward; for 

every log record of the form <Ti, Xj, V1,V2> found in the log, the system restores the data item Xj to 

its old value V1. Scanning of the log terminates when the log record <Ti , start> is found. Scanning 

the log backward is important, since a transaction may have updated a data item more than once. As 

an illustration, consider the pair of log records 

<T,A,10, 20> 
 

<Ti,A,20, 30> 
 

The log records represent a modification of data item A by Ti, followed by another modification of A 

by Ti. Scanning the log backward sets A correctly to 10.Ifthelog were scanned in the forward 

direction, A would be set to 20, which is incorrect. If strict two-phase locking is used for concurrency 

control, locks held by a transaction T may be released only after the transaction has been rolled back 

as described. 

Once transaction T (that is being rolled back) has updated a data item, no other transaction could have 

updated the same data item, because of the concurrency-control requirements. Therefore, restoring the 

old value of the data item will not erase the effects of any other transaction. 

Checkpoints 
 

we used checkpoints to reduce the number of log records that the system must scan when it 

recovers from a crash. Since we assumed no concurrency, it was necessary to consider only the 

following transactions during recovery: 

• Those transactions that started after the most recent checkpoint 
 

• The one transaction, if any, that was active at the time of the most recent checkpoint. 
 

The situation is more complex when transactions can execute concurrently, since several transactions 

may have been active at the time of the most recent checkpoint. 

In a concurrent transaction-processing system, we require that the checkpoint log record be of the 

form <checkpoint L>,where L is a list of transactions active at the time of the checkpoint. Again, we 

assume that transactions do not perform updates either on the buffer blocks or on the log while the 

checkpoint is in progress. The requirement that transactions must not perform any updates to buffer 

blocks or to the log during check pointing can be bothersome, since transaction processing will have 

to halt while a checkpoint is in progress. A fuzzy checkpoint is a checkpoint where transactions are 

allowed to perform updates even while buffer blocks are being written out. 
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Restart Recovery 

When the system recovers from a crash, it constructs two lists: The undo-list consists of 

transactions to be undone, and the redo-list consists of transactions to be redone. The system 

constructs the two lists as follows: Initially, they are both empty. The system scans the log backward, 

examining each record, until it finds the first <checkpoint> record: 

• For each record found of the form <Ti commit>, it adds Ti to redo-list. 
 

• For each record found of the form <Ti start>,if Ti is not in redo-list, then it adds Ti to undo-list. 
 

When the system has examined all the appropriate log records, it checks the list L in the checkpoint 

record. For each transaction Ti in L, if Ti is not in redo-list then it adds Ti to the undo-list. 

Once the redo-list and undo-list have been constructed, the recovery proceeds as follows: 
 

1. The system rescans the log from the most recent record backward, and performs an undo for 

each log record that belongs transaction Ti on the undo-list.   Log records of transactions on 

the redo-list are ignored in this phase. The scan stops when the <Ti start> records have been 

found for every transaction Ti in the undo-list. 

2.  The system locates the most recent <checkpoint L> record on the log. Notice that this step 

may involve scanning the log forward, if the checkpoint record was passed in step 1. 

3.  The system scans the log forward from the most recent <checkpoint L>record, and performs 

redo for each log record that belongs to a transaction Ti that is on the redo-list. It ignores log 

records of transactions on the undo-list in this phase. 

It is important in step 1 to process the log backward, to ensure that the resulting state of the database 

is correct. 

After the system has undone all transactions on the undo-list, it redoes those transactions on 

the redo-list. It is important, in this case, to process the log forward. When the recovery process has 

completed, transaction processing resumes. It is important to undo the transaction in the undo-list 

before redoing transactions in the redo-list, using the algorithm in steps 1 to 3; otherwise, a problem 

may occur. Suppose that data item A initially has the value 10. Suppose that a transaction Ti updated 

data item A to 20 and aborted; transaction rollback would restore A to the value 10. Suppose that 

another transaction Ti then updated data item A to 30 and committed, following which the system 

crashed. The state of the log at the time of the crash is 

<Ti, A, 10, 20> 
 

<Tj, A, 10, 30> 
 

<Tj commit> 
 

If the redo pass is performed first, A will be set to 30; then, in the undo pass, A will be set to 10, 

which is wrong. The final value of Q should be 30, which we can ensure by performing undo before 

performing redo. 

Buffer Management 
 

Now we consider several subtle details that are essential to the implementation of a crash- 

recovery scheme that ensures data consistency and imposes a minimal amount of overhead on 

interactions with the database. 
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Log-Record Buffering 
 

So far, we have assumed that every log record is output to stable storage at the time it is 

created. This assumption imposes a high overhead on system execution for several reasons: Typically, 

output to stable storage is in units of blocks. In most cases, a log record is much smaller than a block. 

Thus, the output of each log record translates to a much larger output at the physical level. The output 

of a block to stable storage may involve several output operations at the physical level. 

The cost of performing the output of a block to stable storage is sufficiently high that it is 

desirable to output multiple log records at once. To do so, we write log records to a log buffer in main 

memory, where they stay temporarily until they are output to stable storage. Multiple log records can 

be gathered in the log buffer, and output to stable storage in a single output operation. The order of 

log records in the stable storage must be exactly the same as the order in which they were written to 

the log buffer. 

As a result of log buffering, a log record may reside in only main memory (volatile storage) 

for a considerable time before it is output to stable storage. Since such log records are lost if the 

system crashes, we must impose additional requirements on the recovery techniques to ensure 

transaction atomicity: 

• Transaction Ti enters the commit state after the <Ti commit> log record has been output to 

stable storage. 

• Before the <Ti commit> log record can be output to stable storage, all log records pertaining 

to transaction Ti must have been output to stable storage. 

• Before a block of data in main memory can be output to the database (in non-volatile 

storage), all log records pertaining to data in that block must have been output to stable storage. 

This rule is called the write-ahead logging (WAL) rule. The three rules state situations in 

which certain log records must have been output to stable storage. There is no problem resulting from 

the output of log records earlier than necessary. Thus, when the system finds it necessary to output a 

log record to stable storage, it outputs an entire block of log records, if there are enough log records in 

main memory to fill a block. If there are insufficient log records to fill the block, all log records in 

main memory are combined into a partially full block, and are output to stable storage. Writing the 

buffered log to disk is sometimes referred to as a log force. 

 Database Buffering 
 

In Log-Record buffering, we described the use of a two-level storage hierarchy. The system stores the 

database in non-volatile storage (disk), and brings blocks of data into main memory as needed. Since 

main memory is typically much smaller than the entire database, it may be necessary to overwrite a 

block B in main memory when another block B2 needs to be brought into memory. If B1 has been 

modified B1 must be output prior to the input of B2, this storage hierarchy is the standard operating 

system concept of virtual memory. The rules for the output of log records limit the freedom of the 

system to output blocks of data. If the input of block B2 causes block B1 to be chosen for output, all 

log records pertaining to data in B1 must be output to stable storage before B1 is output. Thus, the 

sequence of actions by the system would be: 

• Output log records to stable storage until all log records pertaining to block B1 have been output. 
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• Output block B1 
 

• Input blocks B2 from disk to main memory. 
 

It is important that no writes to the block B1be in progress while the system carries out this sequence 

of actions. We can ensure that there are no writes in progress by using a special means of locking: 

Before a transaction performs a write on a data item, it must acquire an exclusive lock on the block in 

which the data item resides. 

The lock can be released immediately after the update has been performed. Before a block is output, 

the system obtains an exclusive lock on the block, to ensure that no transaction is updating the block. 

It releases the lock once the block output has completed. Locks that are held for a short duration are 

often called latches. Latches are treated as distinct from locks used by the concurrency-control 

system. As a result, they may be released without regard to any locking protocol, such as two-phase 

locking, required by the concurrency-control system. 

To illustrate the need for the write-ahead logging requirement, consider our banking example 

with transactions T0 and T1: 

. Suppose that the state of the log is <T0 start> 
 

<T0,A,1000, 950> 
 

and that transaction T0 issues a read(B). Assume that the block on which B resides is not in main 

memory, and that main memory is full. Suppose that the block on which A resides is chosen to be 

output to disk. If the system outputs this block to disk and then a crash occurs, the values in the 

database for accounts A, B,andC are $950, $2000, and $700, respectively. This database state is 

inconsistent. However, because of the WAL requirements, the log record <T0 ,A,1000, 950> must be 

output to stable storage prior to output of the block on which A resides. The system can use the log 

record during recovery to bring the database back to a consistent state. 

 Operating System Role in Buffer Management 
 

We can manage the database buffer by using one of two approaches: 
 

1. The database system reserves part of main memory to serve as a buffer that it, rather than the 

operating system, manages. The database system manages data-block transfer in accordance with the 

requirements. This approach has the drawback of limiting flexibility in the use of main memory. The 

buffer must be kept small enough that other applications have sufficient main memory available for 

their needs. However, even when the other applications are not running, the database will not be able 

to make use of all the available memory. Likewise, non-database applications may not use that part of 

main memory reserved for the database buffer, even if some of the pages in the database buffer are 

not being used. 

2. The database system implements its buffer within the virtual memory provided by the operating 

system. Since the operating system knows about the memory requirements of all processes in the 

system, ideally it should be in charge of deciding what buffer blocks must be force-output to disk, and 

when. But, to ensure the write-ahead logging requirements, the operating system should not write out 

the database buffer pages itself, but in- stead should request the database system to force-output the 

buffer blocks. 
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The database system in turn would force-output the buffer blocks to the database, after writing 

relevant log records to stable storage. Unfortunately, almost all current-generation operating systems 

retain complete control of virtual memory. The operating system reserves space on disk for storing 

virtual-memory pages that are not currently in main memory; this space is called swap space. If the 

operating system decides to output a block Bx, that block is output to the swap space on disk, and 

there is no way for the database system to get control of the output of buffer blocks. 

Therefore, if the database buffer is in virtual memory, transfers between database files and the 

buffer in virtual memory must be managed by the database system, which enforces the write-ahead 

logging requirements. 

This approach may result in extra output of data to disk. If a block Bx is output by the 

operating system, that block is not output to the database. Instead, it is output to the swap space for 

the operating system’s virtual memory. When the database system needs to output Bx, the operating 

system may need first to input Bx from its swap space. Thus, instead of a single output of Bx, there 

may be two outputs of Bx(one by the operating system, and one by the database system) and one extra 

input of Bx. 

Although both approaches suffer from some drawbacks, one or the other must be chosen 

unless the operating system is designed to support the requirements of database logging. Only a few 

current operating systems, such as the Mach operating system, support these requirements. 

 Failure with Loss of Nonvolatile Storage 
 

The basic scheme is to dump the entire content of the database to stable storage 

periodically—say, once per day. For example, we may dump the database to one or more magnetic 

tapes. If a failure occurs that results in the loss of physical database blocks, the system uses the most 

recent dump in restoring the database to a previous consistent state. Once this restoration has been 

accomplished, the system uses the log to bring the database system to the most recent consistent state. 

More precisely, no transaction may be active during the dump procedure, and a procedure similar to 

check pointing must take place: 

1. Output all log records currently residing in main memory onto stable storage. 
 

2. Output all buffer blocks onto the disk. 
 

3. Copy the contents of the database to stable storage. 
 

4. Output a log record <dump> onto the stable storage. 
 

Steps 1, 2, and 4 correspond to the three steps used for checkpoints, To recover from the loss of 

nonvolatile storage, the system restores the database to disk by using the most recent dump. Then, it 

consults the log and redoes all the transactions that have committed since the most recent dump 

occurred. Notice that no undo operations need to be executed. A dump of the database contents is also 

referred to as an archival dump, since we can archive the dumps and use them later to examine old 

states of the database. Dumps of a database and check pointing of buffers are similar. 

The simple dump procedure described here is costly for the following two reasons.: 
 

 The entire database must be be copied to stable storage, resulting in considerable data 

transfer. 
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 Since transaction processing is halted during the dump procedure, CPU cycles are wasted. 

Fuzzy dump schemes have been developed, which allow transactions to be active while the 

dump is in progress. They are similar to fuzzy check pointing schemes; see the 

bibliographical notes for more details. 

 
 ARIES 

 

The state of the art in recovery methods is best illustrated by the ARIES recovery method. 

The advanced recovery technique which we have described is modeled after ARIES, but has been 

simplified significantly to bring out key concepts and make it easier to understand. In contrast, ARIES 

uses a number of techniques to reduce the time taken for recovery, and to reduce the overheads of 

checkpointing. In particular, ARIES is able to avoid redoing many logged operations that have 

already been applied and to reduce the amount of information logged. The price paid is greater 

complexity; the benefits are worth the price. 

The major differences between ARIES and our advanced recovery algorithm are that ARIES: 
 

1. Uses a log sequence number (LSN) to identify log records, and the use of LSNs in database pages 

to identify which operations have been applied to a database page. 

2. Supports physiological redo operations, which are physical in that the affected page is physically 

identified, but can be logical within the page. For instance, the deletion of a record from a page may 

result in many other records in the page being shifted, if a slotted page structure is used. With physical 

redo logging, all bytes of the page affected by the shifting of records must be logged. With 

physiological logging, the deletion operation can be logged, resulting in a much smaller log record. 

Redo of the deletion operation would delete the record and shift other records as required. 

3. Uses a dirty page table to minimize unnecessary redos during recovery. Dirty pages are those that 

have been updated in memory, and the disk version is not up-to-date. 

4. Uses fuzzy check pointing scheme that only records information about dirty pages and associated 

information, and does not even require writing of dirty pages to disk. It flushes dirty pages in the 

background, continuously, instead of writing them during checkpoints. 

 

Data Structures 
 

Each log record in ARIES has a log sequence number (LSN) that uniquely identifies the 

record. The number is conceptually just a logical identifier whose value is greater for log records that 

occur later in the log. In practice, the LSN is generated in such a way that it can also be used to locate 

the log record on disk. Typically, ARIES splits a log into multiple log files, each of which has a file 

number. When a log file grows to some limit, ARIES appends further log records to a new log file; the 

new log file has a file number that is higher by 1 than the previous log file. 

The LSN then consists of a file number and an offset within the file. Each page also maintains an 

identifier called the PageLSN. Whenever an operation (whether physical or logical) occurs on a page, 

the operation stores the LSN of its log record in the PageLSN field of the page. During the redo phase of 

recovery, any log records with LSN less than or equal to the PageLSN of a page should not be executed 

on the page, since their actions are already reflected on the page. In combination with a scheme for
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 recording PageLSNs as part of checkpointing, ARIES can avoid even reading many pages for which 

logged operations are already reflected on disk. Thereby recovery time is reduced significantly. 

The PageLSN is essential for ensuring idempotence in the presence of physiological redo 

operations, since reapplying a physiological redo that has already been applied to a page could cause 

incorrect changes to a page. Pages should not be flushed to disk while an update is in progress, since 

physiological operations cannot be redone on the partially updated state of the page on disk. 

Therefore, ARIES uses latches on buffer pages to prevent them from being written to disk while they 

are being updated. It releases the buffer page latch only after the update is completed, and the log 

record for the update has been written to the log. 

Each log record also contains the LSN of the previous log record of the same transaction. This 

value, stored in the PrevLSN field, permits log records of a transaction to be fetched backward, 

without reading the whole log. There are special redo-only log records generated during transaction 

rollback, called compensation log records (CLRs) in ARIES. These serve the same purpose as the 

redo-only log records in our advanced recovery scheme. In addition CLRs serve the role of the 

operation-abort log records in our scheme. The CLRs have an extra field, called the UndoNextLSN. 

Recovery Algorithm 
 

ARIES recovers from a system crash in three passes. 
 

• Analysis pass: This pass determines which transactions to undo, which pages were dirty at the time 

of the crash, and the LSN from which the redo pass should start. 

• Redo pass: This pass starts from a position determined during analysis, and performs a redo, 

repeating history, to bring the database to a state it was in before the crash. 

• Undo pass: This pass rolls back all transactions that were incomplete at the time of crash. 
 

Analysis Pass: The analysis pass finds the last complete checkpoint log record, and reads in the 

DirtyPageTable from this record. It then sets RedoLSN to the minimum of the RecLSNs of the pages 

in the DirtyPageTable. If there are no dirty pages, it sets RedoLSN to the LSN of the checkpoint log 

record. The redo pass starts its scan of the log from RedoLSN. All the log records earlier than this 

point have already been applied to the database pages on disk. The analysis pass initially sets the list 

of transactions to be undone, undo-list, to the list of transactions in the checkpoint log record. The 

analysis pass also reads from the checkpoint log record the LSNs of the last log record for each 

transaction in undo-list. The analysis pass continues scanning forward from the checkpoint. Whenever 

it finds a log record for a transaction not in the undo-list, it adds the transaction to undo-list. 

Whenever it finds a transaction end log record, it deletes the transaction from undo-list. All 

transactions left in undo-list at the end of analysis have to be rolled back later, in the undo pass. The 

analysis pass also keeps track of the last record of each transaction in undo-list, which is used in the 

undo pass. 

The analysis pass also updates Dirty Page Table whenever it finds a log record for an update 

on a page. If the page is not in Dirty Page Table, the analysis pass adds it to Dirty Page Table, and sets 

the RecLSN of the page to the LSN of the log record. 

Redo Pass: The redo pass repeats history by replaying every action that is not already reflected in the 

page on disk. The redo pass scans the log forward from RedoLSN. Whenever it finds an update log 

record, it takes this action:
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1. If the page is not in Dirty Page Table or the LSN of the update log record is less than the RecLSN 

of the page in Dirty Page Table, then the redo pass skips the log record. 

2. Otherwise the redo pass fetches the page from disk, and if the PageLSN is less than the LSN of the 

log record, it redoes the log record. 

Note that if either of the tests is negative, then the effects of the log record have already 

appeared on the page. If the first test is negative, it is not even necessary to fetch the page from disk. 

Undo Pass and Transaction Rollback: The undo pass is relatively straightforward. It performs a 

backward scan of the log, undoing all transactions in undo-list. If a CLR is found, it uses the 

UndoNextLSN field to skip log records that have already been rolled back. Otherwise, it uses the 

PrevLSN field of the log record to find the next log record to be undone. 

Whenever an update log record is used to perform an undo (whether for transaction rollback 

during normal processing, or during the restart undo pass), the undo pass generates a CLR containing 

the undo action performed (which must be physiological). It sets the UndoNextLSN of the CLR to the 

PrevLSN value of the update log record. 

Other Features 
 

Among other key features that ARIES provides are: 
 

• Recovery independence: Some pages can be recovered independently from others, so that they can 

be used even while other pages are being recovered. If some pages of a disk fail, they can be 

recovered without stopping transaction processing on other pages. 

• Save points: Transactions can record save points, and can be rolled back partially, up to a savepoint. 

This can be quite useful for deadlock handling, since transactions can be rolled back up to a point that 

permits release of required locks, and then restarted from that point. 

• Fine-grained locking: The ARIES recovery algorithm can be used with index concurrency control 

algorithms that permit tuple level locking on indices, instead of page level locking, which improves 

concurrency significantly. 

• Recovery optimizations: The Dirty Page Table can be used to prefetch pages during redo, instead 

of fetching a page only when the system finds a log record to be applied to the page. Out-of-order 

redo is also possible: Redo can be postponed on a page being fetched from disk, and performed when 

the page is fetched. Meanwhile, other log records can continue to be processed. 

6. Remote Backup Systems 
 

Traditional transaction-processing systems are centralized or client–server systems. Such 

systems are vulnerable to environmental disasters such as fire, flooding, or earthquakes. Increasingly,  

there is a need for transaction-processing systems that can function in spite of system failures or 

environmental disasters. Such systems must provide high availability, that is, the time for which the 

system is unusable must be extremely small. 

We can achieve high availability by performing transaction processing at one site, called the 

primary site, and having a remote backup site where all the data from the primary site are replicated. 

The remote backup site is sometimes also called the secondary site. The remote site must be kept 

synchronized with the primary site, as updates are performed at the primary. We achieve 

synchronization by sending all log records from primary site to the remote backup site. The remote 
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backup site must be physically separated from the primary—for example, we can locate it in a 

different state—so that a disaster at the primary does not damage the remote backup site. Figure 

below shows the architecture of a remote backup system. 

 

 

 

When the primary site fails, the remote backup site takes over processing. First, however, it 

performs recovery, using its (perhaps outdated) copy of the data from the primary, and the log records 

received from the primary. In effect, the remote backup site is performing recovery actions that would 

have been performed at the primary site when the latter recovered. Standard recovery algorithms, with 

minor modification, can be used for recovery at the remote backup site. Once recovery has been 

performed, the remote backup site starts processing transactions. 

Availability is greatly increased over a single-site system, since the system can recover even 

if all data at the primary site are lost. The performance of a remote backup system is better than the 

performance of a distributed system with two-phase commit. Several issues must be addressed in 

designing a remote backup system: 

• Detection of failure. As in failure-handling protocols for distributed system, it is important for the 

remote backup system to detect when the primary has failed. Failure of communication lines can fool 

the remote backup into believing that the primary has failed. To avoid this problem, we maintain 

several communication links with independent modes of failure between the primary and the remote 

backup. For example, in addition to the network connection, there may be a separate modem 

connection over a telephone line, with services provided by different telecommunication companies. 

These connections may be backed up via manual intervention by operators, who can communicate 

over the telephone system. 

• Transfer of control. When the primary fails, the backup site takes over processing and becomes the 

new primary. When the original primary site recovers, it can either play the role of remote backup, or 

take over the role of primary site again. In either case, the old primary must receive a log of updates 

carried out by the backup site while the old primary was down. The simplest way of transferring 

control is for the old primary to receive redo logs from the old backup site, and to catch up with the 

updates by applying them locally. The old primary can then act as a remote backup site. If control 

must be transferred back, the old backup site can pretend to have failed, resulting in the old primary 

taking over. 

• Time to recover. If the log at the remote backup grows large, recovery will take a long time. The 

remote backup site can periodically process the redo log records that it has received, and can perform 

a checkpoint, so that earlier parts of the log can be deleted. The delay before the remote backup takes 

over can be significantly reduced as a result. A hot-spare configuration can make takeover by the 
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• backup site almost instantaneous. In this configuration, the remote backup site continually processes 

redo log records as they arrive, applying the updates locally. As soon as the failure of the primary is 

detected, the backup site completes recovery by rolling back incomplete transactions; it is then ready 

to process new transactions. 

• Time to commit. To ensure that the updates of a committed transaction are durable, a transaction 

must not be declared committed until its log records have reached the backup site. This delay can 

result in a longer wait to commit a transaction, and some systems therefore permit lower degrees of 

durability. The degrees of durability can be classified as follows. 

One-safe: A transaction commits as soon as its commit log record is written to stable storage at the 

primary site. The problem with this scheme is that the updates of a committed transaction may not 

have made it to the backup site, when the backup site takes over processing. Thus, the updates may 

appear to be lost. When the primary site recovers, the lost updates cannot be merged in directly, since 

the updates may conflict with later updates performed at the backup site. Thus, human intervention 

may be required to bring the database to a consistent state. 

Two-very-safe: A transaction commits as soon as its commit log record is written to stable storage at 

the primary and the backup site. The problem with this scheme is that transaction processing cannot 

proceed if either the primary or the backup site is down. Thus, availability is actually less than in the 

single-site case, although the probability of data loss is much less. 

Two-safe: This scheme is the same as two-very-safe if both primary and backup sites are active. If 

only the primary is active, the transaction is allowed to commit as soon as its commit log record is 

written to stable storage at the primary site. This scheme provides better availability than does two- 

very-safe, while avoiding the problem of lost transactions faced by the one-safe scheme. It results in a 

slower commit than the one-safe scheme, but the benefits generally outweigh the cost. 

moodbanao.net


	2. Transaction State
	3. Implementation of Atomicity and Durability
	4. Concurrent Executions
	5. Serializability
	Conﬂict Serializability:
	View Serializability:

	6. Recoverability
	Recoverable Schedules:
	Cascadeless Schedules

	7. Implementation of Isolation
	8. Testing for Serializability
	9. Lock-Based Protocols
	Locks
	Granting of Locks
	The Two-Phase Locking Protocol
	Implementation of Locking
	Graph-Based Protocols

	10. Timestamp-Based Protocols
	Timestamps
	The Timestamp-Ordering Protocol
	Thomas’ Write Rule

	11. Validation-Based Protocols
	12. Multiple Granularity

