


Database Management Systems 

1 

 

 

       UNIT-5 

STORAGE AND INDEXING 

1. Data on External Storage 

 

Disks: 

Can retrieve random page at fixed cost 

But reading several consecutive pages is much cheaper than  

reading them in random order 

 

Tapes: 

Can only read pages in sequence 

Cheaper than disks; used for archival storage 

 

Indexing: 

Indexing is a way to optimize performance of a database by minimizing the number of disk 

accesses required when a query is processed. 

An index or database index is a data structure which is used to quickly locate and access the 

data in a database table. 

Indexes are created using some database columns. 

• The first column is the Search key that contains a copy of the primary key or candidate 

key of the table. These values are stored in sorted order so that the corresponding data 

can be accessed quickly (Note that the data may or may not be stored in sorted order). 

• The second column is the Data Reference which contains a set of pointers holding the 

address of the disk block where that particular key value can be found. 

 

Alternatives for Data Entry k* in Index: 

❖ In a data entry k* we can store: 

▪  Data record with key value k, or 

▪  <k, rid of data record with search key value k>, or 

▪  <k, list of rids of data records with search key k> 

❖ Choice of alternative for data entries is orthogonal to the indexing technique used to locate 

data entries with a given key value k. 

▪ Examples of indexing techniques: B+ trees, hash-based structures 

▪ Typically, index contains auxiliary information that directs searches to the desired 

data entries 

❖ Alternative 1: 

▪ If this is used, index structure is a file organization for data records (instead of a 

Heap file or sorted file). 

moodbanao.net



Database Management Systems 

2 

 

 

▪ At most one index on a given collection of data records can use Alternative 1.  

(Otherwise, data records are duplicated, leading to redundant storage and potential 

inconsistency.) 

▪ If data records are very large, # of pages containing data entries is high.  Implies 

size of auxiliary information in the index is also large, typically.  

❖ Alternatives 2 and 3: 

▪ Data entries typically much smaller than data records.  So, better than Alternative 

1 with large data records, especially if search keys are small. (Portion of index 

structure used to direct search, which depends on size of data entries, is much 

smaller than with Alternative 1.) 

▪ Alternative 3 more compact than Alternative 2, but leads to variable sized data 

entries even if search keys are of fixed length. 

2. Types of Indexing: 

• Primary Index − Primary index is defined on an ordered data file. The data file is ordered 

on a key field. The key field is generally the primary key of the relation. 

• Secondary Index − Secondary index may be generated from a field which is a candidate 

key and has a unique value in every record, or a non-key with duplicate values. 

• Clustering Index − Clustering index is defined on an ordered data file. The data file is 

ordered on a non-key field. (or) 

If order of data records is the same as, or `close to’, order of data entries, then called 

clustered index. Alternative 1 implies clustered; in practice, clustered also implies 

Alternative 1 (since sorted files are rare). A file can be clustered on at most one search 

key. Cost of retrieving data records through index varies greatly based on whether index 

is clustered or not! 

Suppose that Alternative (2) is used for data entries, and that the data records are stored 

in a Heap file. 

▪ To build clustered index, first sort the Heap file (with some free space on each 

page for future inserts).   

▪ Overflow pages may be needed for inserts.  (Thus, order of data recs is `close to’, 

but not identical to, the sort order.) 

 

 

moodbanao.net



Database Management Systems 

3 

 

 

Ordered Indexing is of two types − 

o Dense Index 

o Sparse Index 

Dense Index 

In dense index, there is an index record for every search key value in the database. This makes 

searching faster but requires more space to store index records itself. Index records contain 

search key value and a pointer to the actual record on the disk. 

 

Sparse Index 

In sparse index, index records are not created for every search key. An index record here 

contains a search key and an actual pointer to the data on the disk. To search a record, we first 

proceed by index record and reach at the actual location of the data. If the data we are looking 

for is not where we directly reach by following the index, then the system starts sequential 

search until the desired data is found. 

 

Multilevel Index 

Index records comprise search-key values and data pointers. Multilevel index is stored on the 

disk along with the actual database files. As the size of the database grows, so does the size of 

the indices. There is an immense need to keep the index records in the main memory so as to 

speed up the search operations. If single-level index is used, then a large size index cannot be 

kept in memory which leads to multiple disk accesses. 

 

moodbanao.net



Database Management Systems 

4 

 

 

Indexes must be chosen to speed up important queries (and perhaps some updates!). 

▪ Index maintenance overhead on updates to key fields. 

▪ Choose indexes that can help many queries, if possible. 

▪ Build indexes to support index-only strategies. 

▪ Clustering is an important decision; only one index on a given relation can be 

clustered! 

▪ Order of fields in composite index key can be important. 

3. File organization and Indexing: 

Relative data and information are stored collectively in file formats. A file is a sequence of 

records stored in binary format. A disk drive is formatted into several blocks that can store 

records. File records are mapped onto those disk blocks. 

File Organization 

File Organization defines how file records are mapped onto disk blocks. We have four types of 

File Organization to organize file records − 

 

Heap File Organization 

When a file is created using Heap File Organization, the Operating System allocates memory 

area to that file without any further accounting details. File records can be placed anywhere in 

that memory area. It is the responsibility of the software to manage the records. Heap File does 

not support any ordering, sequencing, or indexing on its own. 

Sequential File Organization 

Every file record contains a data field (attribute) to uniquely identify that record. In sequential 

file organization, records are placed in the file in some sequential order based on the unique key 

field or search key. Practically, it is not possible to store all the records sequentially in physical 

form. 

Hash File Organization 

Hash File Organization uses Hash function computation on some fields of the records. The 

output of the hash function determines the location of disk block where the records are to be 

placed. 

moodbanao.net



Database Management Systems 

5 

 

 

Clustered File Organization 

Clustered file organization is not considered good for large databases. In this mechanism, 

related records from one or more relations are kept in the same disk block, that is, the ordering 

of records is not based on primary key or search key. 

File Operations 

Operations on database files can be broadly classified into two categories − 

• Update Operations 

• Retrieval Operations 

Update operations change the data values by insertion, deletion, or update. Retrieval operations, 

on the other hand, do not alter the data but retrieve them after optional conditional filtering. In 

both types of operations, selection plays a significant role. Other than creation and deletion of a 

file, there could be several operations, which can be done on files. 

• Open − A file can be opened in one of the two modes, read mode or write mode. In 

read mode, the operating system does not allow anyone to alter data. In other words, 

data is read only. Files opened in read mode can be shared among several entities. Write 

mode allows data modification. Files opened in write mode can be read but cannot be 

shared. 

• Locate − Every file has a file pointer, which tells the current position where the data is 

to be read or written. This pointer can be adjusted accordingly. Using find (seek) 

operation, it can be moved forward or backward. 

• Read − By default, when files are opened in read mode, the file pointer points to the 

beginning of the file. There are options where the user can tell the operating system 

where to locate the file pointer at the time of opening a file. The very next data to the 

file pointer is read. 

• Write − User can select to open a file in write mode, which enables them to edit its 

contents. It can be deletion, insertion, or modification. The file pointer can be located at 

the time of opening or can be dynamically changed if the operating system allows to do 

so. 

• Close − This is the most important operation from the operating system’s point of view. 

When a request to close a file is generated, the operating system 

o removes all the locks (if in shared mode), 

o saves the data (if altered) to the secondary storage media, and 

o releases all the buffers and file handlers associated with the file. 

The organization of data inside a file plays a major role here. The process to locate the file 

pointer to a desired record inside a file various based on whether the records are arranged 

sequentially or clustered. 

 

 

moodbanao.net



Database Management Systems 

6 

 

 

4. Index Data structures: 

1. Hash Based Indexing 

2. Tree based Indexing 

1.  hash based Indexing: For a huge database structure, it can be almost next to 

impossible to search all the index values through all its level and then reach the 

destination data block to retrieve the desired data. Hashing is an effective technique to 

calculate the direct location of a data record on the disk without using index structure. 

Hashing uses hash functions with search keys as parameters to generate the address of a data 

record. 

• Bucket − A hash file stores data in bucket format. Bucket is considered a unit of 

storage. A bucket typically stores one complete disk block, which in turn can store one 

or more records. 

• Hash Function − A hash function, h, is a mapping function that maps all the set of 

search-keys K to the address where actual records are placed. It is a function from 

search keys to bucket addresses. 

Ex:  

 

2. Tree Based Indexing: An alternative to hash-based indexing is to organize records 

using a tree like data structure. The data entries are arranged in sorted order by search 

key value and a hierarchical search data structure is maintained that directs searches 

to the correct page of data entries. 

moodbanao.net



Database Management Systems 

7 

 

 

The lowest level of the tree is called the leaf level, contains the data entries. This allows 

us to efficiently locate all data entries with search key values in a desired range. All 

searches begin at the top most node, called the root, and the contents of pages in non-leaf 

levels direct searches to the correct leaf page. Non leaf pages contain node pointers 

separated by search key values. The pointer to the left of a key value k, points to the 

subtree that contains only data entries less than k.  The node pointer to the right of a key 

value k, points to a subtree that contains only data entries greater than or equal to k. 

pages  

 

5. Comparison of File organizations: 

 

 Sequential Heap/Direct Hash ISAM B+ tree Cluster 

Method of 

storing 

Stored as 

they come 

or sorted as 

they come 

Stored at the 

end of the 

file. But the 

address in 

the memory 

is random. 

Stored at 

the hash 

address 

generated 

Address index is 

appended to the 

record 

Stored in a 

tree like 

structure 

Frequently 

joined 

tables are 

clubbed 

into one 

file based 

on cluster 

key 

Types 

Pile file and 

sorted file 

Method 

  Static and 

dynamic 

hashing 

Dense, Sparse, 

multilevel indexing 

  Indexed 

and Hash 

Design 
Simple 

Design 

Simplest Medium Complex Complex Simple 

Search starts here 

moodbanao.net



Database Management Systems 

8 

 

 

Storage Cost 

Cheap 

(magnetic 

tapes) 

Cheap Medium Costlier Costlier Medium 

Advantage 

Fast and 

efficient 

when there 

is large 

volumes of 

data, Report 

generation, 

statistical 

calculations 

etc 

Best suited 

for bulk 

insertion, 

and small 

files/tables 

Faster 

Access 

No Need to 

Sort 

Handles 

multiple 

transactions 

Suitable for 

Online 

transactions 

Searching records 

is faster. 

Suitable for large 

database. 

Any of the columns 

can be used as key 

column. 

 

Searching range of 

data & partial data 

are efficient. 

Searching 

range of 

data & 

partial data 

are efficient. 

No 

performance 

degrades 

when there 

is insert / 

delete / 

update. 

Grows and 

shrinks with 

data. 

Works well 

in 

secondary 

storage 

devices and 

hence 

reducing 

disk I/O. 

Since all 

data is at the 

leaf node, 

searching is 

easy. 

All data at 

leaf node 

are sorted 

sequential 

linked list. 

Best 

suited for 

frequently 

joined 

tables. 

Suitable 

for 1:M 

mappings 

Disadvantage 

Sorting of 

data each 

time for 

insert/delete/ 

update takes 

time and 

makes 

Records are 

scattered in 

the memory 

and they are 

inefficiently 

used. Hence 

increases the 

memory 

Accidental 

Deletion or 

updation of 

Data 

Use of 

Memory is 

inefficient 

Searching 

Extra cost to 

maintain index. 

File reconstruction 

is needed as 

insert/update/delete. 

Does not grow with 

data. 

Not suitable 

for static 

tables 

Not 

suitable 

for large 

database. 

Suitable 

only for 

the joins 

on which 

moodbanao.net



Database Management Systems 

9 

 

 

system 

slow. 

size. 

Proper 

memory 

management 

is needed. 

 

Not suitable 

for large 

tables. 

range of 

data, partial 

data, non-

hash key 

column, 

searching 

single hash 

column 

when 

multiple 

hash keys 

present or 

frequently 

updated 

column as 

hash key 

are 

inefficient. 

clustering 

is done. 

Less 

frequently 

used joins 

and 1: 1 

Mapping 

are 

inefficient. 

 

Cost of Comparison of file organizations: 

Operations to Compare Scan:  

• Fetch all records from disk 

• Equality search 

• Range selection 

• Insert a record 

• Delete a record 

We ignore CPU costs, for simplicity:  B: The number of data pages 

  R: Number of records per page 

  D: (Average) time to read or write disk page 

  Measuring number of page I/O’s ignores gains of  pre-fetching a sequence of pages; thus, 

even I/O cost is only approximated.  Average-case analysis; based on several simplistic 

assumptions. 

moodbanao.net



Database Management Systems 

10 

 

 

 

 

6. Tree Structured Indexing: 

There are two index data structures, called ISAM and B+ trees, based on tree organizations. These 

structures provide efficient support for range searches, including sorted le scans as a special case. 

Unlike sorted les, these index structures support efficient insertion and deletion. They also 

provide support for equality selections, although they are not as efficient in this case as hash-

based indexes. 

tree-structured indexing techniques support both range searches and equality searches 

ISAM: static structure; 

B+ tree: dynamic, adjusts gracefully under inserts and deletes.  

 

7. ISAM (Indexed Sequential access Method): 

In an ISAM system, data is organized into records which are composed of fixed length fields. 

Records are stored sequentially, originally to speed access on a tape system. A secondary set 

of hash tables known as indexes contain "pointers" into the tables, allowing individual records to 

be retrieved without having to search the entire data set. This is a departure from the 

contemporaneous navigational databases, in which the pointers to other data were stored inside 

the records themselves. The key improvement in ISAM is that the indexes are small and can be 

searched quickly, thereby allowing the database to access only the records it needs. 

When an ISAM file is created, index nodes are fixed, and their pointers do not change during 

inserts and deletes that occur later (only content of leaf nodes change afterwards). As a 

consequence of this, if inserts to some leaf node exceed the node's capacity, new records are 

stored in overflow chains. If there are many more inserts than deletions from a table, these 

overflow chains can gradually become very large, and this affects the time required for retrieval 

of a record. 

ISAM is very simple to understand and implement, as it primarily consists of direct, sequential 

access to a database file. It is also very inexpensive. The tradeoff is that each client machine must 

manage its own connection to each file it accesses. This, in turn, leads to the possibility of 

conflicting inserts into those files, leading to an inconsistent database state. This is typically 

moodbanao.net



Database Management Systems 

11 

 

 

solved with the addition of a client-server framework which marshals client requests and 

maintains ordering. This is the basic concept behind a database management system (DBMS), 

which is a client layer over the underlying data store. 

The indexed access method of reading or writing data only provides the desired outcome if in 

fact the file is organized as an ISAM file with the appropriate, previously defined keys. Access 

to data via the previously defined key(s) is extremely fast. Multiple keys, overlapping keys and 

key compression within the hash tables are supported.  

 

Node structure of ISAM: 

 
The tree can be represented as,  

 
Example:  

Index entries: <the search key value, block/page id> 

they direct search for data entries in leaves.  

Example where each node can hold 2 entries; 10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 

97* 

(* represents key entry) 

 

 
 

 

moodbanao.net



Database Management Systems 

12 

 

 

After Inserting 23*,48*, 41*,42*, 

 

 
Deleting 41*,52*,97*, the tree becomes... 

 

 
 

 

8. B+ Tree: 

B Trees. B Trees are multi-way trees. That is each node contains a set of keys and pointers. A B 

Tree with four keys and five pointers represents the minimum size of a B Tree node. A B Tree 

contains only data pages. 

B Trees are dynamic. That is, the height of the tree grows and contracts as records are added 

and deleted.  

moodbanao.net



Database Management Systems 

13 

 

 

 

B+ Trees A B+ Tree combines features of ISAM and B Trees. It contains index pages and data 

pages. The data pages always appear as leaf nodes in the tree. The root node and intermediate 

nodes are always index pages. These features are similar to ISAM. Unlike ISAM, overflow 

pages are not used in B+ trees.  

The index pages in a B+ tree are constructed through the process of inserting and deleting 

records. Thus, B+ trees grow and contract like their B Tree counterparts. The contents and the 

number of index pages reflects this growth and shrinkage.  

 

B+ Trees and B Trees use a "fill factor" to control the growth and the shrinkage. A 50% fill 

factor would be the minimum for any B+ or B tree. As our example we use the smallest page 

structure. This means that our B+ tree conforms to the following guidelines.  

Number of Keys/page  4 

Number of Pointers/page 5  

Fill Factor 50% 

Minimum Keys in each page 2  

 

 

As this table indicates each page must have a minimum of two keys. The root page may violate 

this rule. The following table shows a B+ tree. As the example illustrates this tree does not have 

a full index page. (We have room for one more key and pointer in the root page.) In addition, 

one of the data pages contains empty slots. 

B+ Tree with four keys 

 

 

 

 

moodbanao.net



Database Management Systems 

14 

 

 

Adding Records to a B+ Tree  

 

The key value determines a record's placement in a B+ tree. The leaf pages are maintained in 

sequential order AND a doubly linked list (not shown) connects each leaf page with its sibling 

page(s). This doubly linked list speeds data movement as the pages grow and contract.  

We must consider three scenarios when we add a record to a B+ tree. Each scenario causes a 

different action in the insert algorithm. The scenarios are:  

The insert algorithm for B+ Trees 

Leaf Page 

Full 

Index Page 

FULL 
Action 

NO NO Place the record in sorted position in the appropriate leaf page 

YES NO 

1. Split the leaf page  

2. Place Middle Key in the index page in sorted order.  

3. Left leaf page contains records with keys below the 

middle key.  

4. Right leaf page contains records with keys equal to or 

greater than the middle key.  

YES YES 

1. Split the leaf page.  

2. Records with keys < middle key go to the left leaf 

page.  

3. Records with keys >= middle key go to the right leaf 

page.  

4. Split the index page.  

5. Keys < middle key go to the left index page.  

6. Keys > middle key go to the right index page.  

7. The middle key goes to the next (higher level) index.  

 

IF the next level index page is full, continue splitting 

the index pages.  

 

Illustrations of the insert algorithm  

The following examples illustrate each of the insert scenarios. We begin with the simplest 

scenario: inserting a record into a leaf page that is not full. Since only the leaf node containing 

25 and 30 contains expansion room, we're going to insert a record with a key value of 28 into 

the B+ tree. The following figures shows the result of this addition.  

moodbanao.net



Database Management Systems 

15 

 

 

Add Record with Key 28  

 

 

Adding a record when the leaf page is full but the index page is not  

 

Next, we're going to insert a record with a key value of 70 into our B+ tree. This record should 

go in the leaf page containing 50, 55, 60, and 65. Unfortunately this page is full. This means 

that we must split the page as follows:  

Left Leaf Page Right Leaf Page 

50 55 60 65 70 

 

The middle key of 60 is placed in the index page between 50 and 75.  

The following table shows the B+ tree after the addition of 70.  

Add Record with Key 70  

 

 

 

moodbanao.net



Database Management Systems 

16 

 

 

Adding a record when both the leaf page and the index page are full  

As our last example, we're going to add a record containing a key value of 95 to our B+ tree. 

This record belongs in the page containing 75, 80, 85, and 90. Since this page is full we split it 

into two pages:  

Left Leaf Page Right Leaf Page 

75 80  85 90 95 

The middle key, 85, rises to the index page. Unfortunately, the index page is also full, so we 

split the index page:  

Left Index Page Right Index Page New Index Page 

25 50  75 85 60 

 

The following table illustrates the addition of the record containing 95 to the B+ tree.  

Add Record with Key 95  

 

 

 

 

 

moodbanao.net



Database Management Systems 

17 

 

 

Deletion in B+ Tree: 

Consider the tree,  

 

Deleting 19*,20*

 
 

Deleting 24*, 

 

Tree appears like,  

 

 

moodbanao.net



Database Management Systems 

18 

 

 

Deleting Keys from a B+ tree  

 

We must consider three scenarios when we delete a record from a B+ tree. Each scenario causes 

a different action in the delete algorithm. The scenarios are:  

The delete algorithm for B+ Trees 

Leaf Page 

Below Fill 

Factor 

Index Page 

Below Fill 

Factor 

Action 

NO NO 

Delete the record from the leaf page. Arrange keys in 

ascending order to fill void. If the key of the deleted record 

appears in the index page, use the next key to replace it. 

YES NO 

Combine the leaf page and its sibling. Change the index 

page to reflect the change either by deleting the parent or 

merging the parent level indexes. 

YES YES 

1. Combine the leaf page and its sibling.  

2. Adjust the index page to reflect the change.  

3. Combine the index page with its sibling.  

Continue combining index pages until you reach a page with 

the correct fill factor or you reach the root page.  

 

 

9. Hash Based Indexing: 

Hash Organization 

• Bucket − A hash file stores data in bucket format. Bucket is considered a unit of storage. 

A bucket typically stores one complete disk block, which in turn can store one or more 

records. 

• Hash Function − A hash function, h, is a mapping function that maps all the set of 

search-keys K to the address where actual records are placed. It is a function from search 

keys to bucket addresses. 

Static Hashing 

In static hashing, when a search-key value is provided, the hash function always computes the 

same address. For example, if mod-4 hash function is used, then it shall generate only 5 values. 

moodbanao.net



Database Management Systems 

19 

 

 

The output address shall always be same for that function. The number of buckets provided 

remains unchanged at all times. 

 

Operation 

• Insertion − When a record is required to be entered using static hash, the hash 

function h computes the bucket address for search key K, where the record will be 

stored. 

Bucket address = h(K) 

• Search − When a record needs to be retrieved, the same hash function can be used to 

retrieve the address of the bucket where the data is stored. 

• Delete − This is simply a search followed by a deletion operation. 

Bucket Overflow 

The condition of bucket-overflow is known as collision. This is a fatal state for any static hash 

function. In this case, overflow chaining can be used. 

• Overflow Chaining − When buckets are full, a new bucket is allocated for the same hash 

result and is linked after the previous one. This mechanism is called Closed Hashing. 

 

 

moodbanao.net



Database Management Systems 

20 

 

 

Disadvantages of Static hashing: 

• In static hashing, function h maps searchkey values to a fixed set of B 

of bucket addresses. Databases grow or shrink with time.   

• If initial number of buckets is too small, and file grows, performance will degrade due to

 too much overflows. 

• If space is allocated for anticipated growth, a significant amount of space will be wasted

 initially (and buckets will be underfull).  

• If database shrinks, again space will be wasted. 

 One solution: periodic reorganization of the file with a new hash function 

Expensive, disrupts normal operations 

• Better solution: allow the number of buckets to be modified dynamically.  

 

 Extendible hashing/ Dynamic Hashing: 

The problem with static hashing is that it does not expand or shrink dynamically as the size of 

the database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets 

are added and removed dynamically and on-demand. Dynamic hashing is also known 

as extended hashing. 

Hash function, in dynamic hashing, is made to produce a large number of values and only a few 

are used initially. 

 

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash value is 

used for computing bucket addresses. Every hash index has a depth value to signify how many 

bits are used for computing a hash function. These bits can address 2n buckets. When all these 

bits are consumed − that is, when all the buckets are full − then the depth value is increased 

linearly and twice the buckets are allocated. 

moodbanao.net



Database Management Systems 

21 

 

 

Hashing is not favorable when the data is organized in some ordering and the queries require a 

range of data. When data is discrete and random, hash performs the best. 

Hashing algorithms have high complexity than indexing. All hash operations are done in 

constant time. 

Mian points on Extendable hashing – one form of dynamic hashing  

l Hash function generates values over a large range — typically b-bit integers, with 

b = 32. 

l At any time use only a prefix of the hash function to index into a table of bucket 

addresses.    

l Let the length of the prefix be i bits,  0  i  32.   

 Bucket address table size = 2i.  Initially i = 0 

 Value of i grows and shrinks as the size of the database grows and shrinks. 

l Multiple entries in the bucket address table may point to a bucket. 

l Thus, actual number of buckets is < 2i  

 The number of buckets also changes dynamically due to merging and 

splitting of buckets.  

Linear Hashing: 

This is another dynamic hashing scheme, an alternative to Extendible Hashing.  

LH handles the problem of long overflow chains without using a directory, and handles 

duplicates.  

Idea: Use a family of hash functions h0, h1, h2, ... – hi(key) = h(key) mod(2iN);  N = initial # 

buckets – h is some hash function (range is 0 to 2|MachineBitLength|) – If N = 2d0, for some 

d0, hi consists of applying h and looking at the last di bits, where di = d0 + i. – hi+1 doubles the 

range of hi (similar to directory doubling) 

Directory avoided in LH by using overflow pages, and choosing bucket to split round-robin. – 

Splitting proceeds in ‘rounds’. Round ends when all NR initial (for round R) buckets are split. – 

Buckets 0 to Next-1 have been split; Next to NR yet to be split. – Current round number is Level. 

moodbanao.net



Database Management Systems 

22 

 

 

 

Ex: Initial Layout 

 The Linear Hashing scheme has m initial buckets labelled 0 through m−1, and an initial hashing 

function h0(k) = f(k) % m that is used to map any key k into one of the m buckets (for simplicity 

assume h0(k) = k % m), and a pointer p which points to the bucket to be split next whenever an 

overflow page is generated (initially p = 0). An example is shown in Figure 1. Bucket Split: 

When the first overflow occurs (it can occur in any bucket), bucket 0, which is pointed by p, is 

split (rehashed) into two buckets: the original bucket 0 and a new bucket m. A new empty page 

is also added in the overflown bucket to accommodate the overflow. The search values originally 

mapped into bucket 0 

 

function h0) are now distributed between buckets 0 and m using a new hashing function h1. 

 

moodbanao.net



Database Management Systems 

23 

 

 

As an example, Figure 2 shows the layout of the Linear Hashing of Figure 1 after inserting a 

new record with key 11. The circled records are the existing records that are moved to the new 

bucket. In more detail, the record is inserted into bucket 11 % 4 = 3. The bucket overflows and 

an overflow page is introduced to accommodate the new record. Bucket 0 is split and the records 

originally in bucket 0 are distributed between bucket 0 and bucket 4, using a new hash function 

h1(k) = k % 8. The next bucket overflow, such as triggered by inserting two records in bucket 2 

or four records in bucket 3 in Figure 2, will cause a new split that will attach a new bucket m+1 

and the contents of bucket 1 will be distributed using h1 between buckets 1 and m + 1. A crucial 

property of h1 is that search values that were originally mapped by h0 to some bucket j must be 

remapped either to bucket j or bucket j + m. This is a necessary property for Linear Hashing to 

work. An example of such hashing function is: h1(k) = k % 2m. Further bucket overflows will 

cause additional bucket splits in a linear bucket-number order (increasing p by one for every 

split). 

moodbanao.net


