mood-book

7

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Designof TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape
. Read - write head
. Control unit
Tape
lewlalalal. bbbl T |

Read-write Head

Control
Unit

FIGURE : Turing machine model

1.2 FORMAL LANGUAGES AND AUTOMATATHEQRY

Tape : Itisatemporary storageandis divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scannied should end with infinite number of blanks. '

Read - write head : The read - write head can read a symbol from where it is pointing to and |
it can write into the tape to where the read - write head points to.

Control Unit: The reading / writing from / to the tape is determined by the control unit, The
different moves performed by the machine depends on the current scanned symbol and the
current state. The read - write head can move either towards left or right i.e., movement can be
on both the directions. The various moves performed by the machine are :

1. Change of state from ong state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards leftor towards right.

The Turing machine can be represented using various notations such as
N Transition table
N Instantancous description
. Transition diagram.

7.2.1 Transition Table

The table below shows the transition table for some Turing machixe. Later sections describe how
to obtain the transition table.

8 | Tape Symbols (I)
States a b X 1y B
% @ X.B | - - YR | -
i Ga® | @nD| - @t B |-
% (@na by | - @ X B | @D | -
2 - : - @ %R | @nBB
s) }] ; :

TURING MACHINES T3

Note that for each state g, there can be a corresponding entry for the symbol in 1. In this table
the symbols a and b are input symbols and can be denoted by the symbol 5, Thus S ¢ I

excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number of B's 1. e., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. It is clear from the
table that

§:0%xTw(Ox Fx{LR})

where O= {40,91:%2, ¢5:943; T={a, b}

Ve{a b, X,Y, B}

g, isthe initial state; B isaspecial symbol indicating blank character

F ={g,} whichisthe final state.
Thus, a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(0.%,T,8,¢,,8,F) where

Q is set of finite states

¥ is set of input alphabets

I isset oftape symbols

& istransition function Q xI'fo (Q xI'x{L,R})

g, isthe initial state _

B is a special symbol indicating blank character

F ¢ issetof final states.

7.2.2 Instantaneous description (ID)

Uniike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition *

AnIDof TM isastring in a ¢, where q is the current state, o g is the string made from tape
symbols denoted by yi.¢., « and # ¢ I"*. The read - write head points fo the first character of
the substring 3. The initial ID is denoted by gof where q is the start state and the read - write

head points to the first symbol of o from left. The final ID isdenoted by o898 where ge F is
the final state and the read - write head points to the blank character denoted by B.

7.4 FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Consider the snapshot of a Turing machine
Tape
la;]azlas'ias!q'z[ag{aéia-,lagl N

Read-write Head 1

~ Control
Unit

In this machine, each a,e T' (i.e.,each g, belongsto the tape symbol). In this snapshot, the
symbol a5 is under read - write head and the symbol towards left of g, 1.e., g, isthe current

state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

gty 0y s gy lgnesrens
where the substring ¢a,a;4, towards left of the state g, is the left sequence, the
substring a,a,a,;..... towards right of the state g, is the right sequence and g, isthe current state
of the machine. The symbol a5 is the next symbol to be scanned.
Assume ihat the current ID of the Turing machine is a,4,0:0,9,3:a5,6;...... as shown in
snapshot of example. ' _
Suppose, there is a transition 8(¢,, a5) = (g3: b, B)

Tt means that if the machine is in state g, and the next symbol to be scanned is a5, then the
machine enters into state g, replacing the symbol a; by b, and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

0y @3 by Gy g e

This can be represented by a MOVe 88 4,¢,0,0, 45850501 dg.cr. |~ 418,030,533 3g. -

Similarly if the current ID of the Turing machine is ¢,a,0,6,4,85054745.-.»
and there is a transition

5(q,,as ¥=(qy,¢;,L)
tneans that if the machine is in state ¢, and the next symbol to be scanned is 4, thenthe machine
enters into state ¢, replacing the symbol a5 by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

Ay Qs G A5 Cr s Ay dgerrenr

TURING MACHINES ' 7.5

This can be represented by amove as a,a,a,a, 4, 85060705 0 |+ 003054,0,C,05 0 g
This configuration indicates that the new siate is ¢, , the next input symbol to be scarmed

is a, . The actions performed by TM depends on
1. The current state.
2. The whole string to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1, Changing the states from one state to another
2. Replacing the symbol pointed to by the read - write head
3. Movement ofthe read - write head towards left or right.
7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(Q0,XT.5,9,.8,F) be a TM. Let the ID of M be

By By @ T gy orrnr Ty WhETE 0 T fOr 1< j<n-1, g € is the current state and 4, as

the next symbol to scanned. If there is a transition &g, a,) =(p, b, &)
thenthemove of machine Mwillbe a,0,0500 0@, G030y Gy, | =@10305 ey BD3 (el
Ifthere is a transition 8(q.a)=(p, b, L)

then the move of machine M will be

DT DY SUUNN- TRRY 1 N FUNONNR. SUR P71 ST PR () JUIRY - FUR TR

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition :

Let M = (Q,Z.1,6.q,.B,F) bea TM. The language L(M) accepted by M is defined as
L(M) = {wigywh- *a, p o, Where wel* pe F and oy, ;e T*}
i.e.,setofall those words win 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Tnitially, the machine will be inthe start state g, withread - write head pointing to the first symbol
of witom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

7.5 FORMAL LANGUAGES ANDAUTOMATATHEORY

7.2.8 Differences between TM and PDA
Push Down Automa :

1. A PDAisanondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

2. The stack can be read and modified only at its top.

3. A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

4. There are two ways in which the PDA may be allowed to signal acceptance. One is by
entering an accepting stafe, the other by emptying its stack.

5. D consisting of the state, remaining input and stack contents to describe the "current condition”
of aPDA.

6. The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.

7. A PDA languages lie strictly between regular languages and CSLs.

Turing Machines :

1. The TMisan abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

2. TM consists of a finite - state control and an infinite tape divided into cells.

TM makes moves based on its current state and the tape symbol at the cell scanned by the

tapehead.

The blank is one of tape symbols but not input symbol.,

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.

Instantaneous description of TM describes cumrent configuration of a TM by finite - lengfh string.

Storage in the finite control helps to designa TM for a particular language.

ATM can simulate the storage and control of a real computer by using one tape to store all

the locations and their confents.

E.J)

O 90 B L

7.3 CONSTRUCTION OF TURING MACHINE (TWM)

In this section, we shall see how TMs can be consiructed.
Example 1: Obtain a Turing machine to acceptthe language L = { 0 "1" jn21}.

Solution : Note that n number of ('s should be followed by n number of I's. For this let us
take an example of the string 1 = gogo1111. The string w should beaccepted as it has four zeroes
followed by equal number of 1's.

TURING MACHINES 1.7

General Procedure :
Let ¢, bethe start state and let the read - write head points to the first symbol of the string to be
scanned. The general procedure to design TM for this case is shown below
1. Replace the left most 0 by X and change the stateto ¢, and then move the read - write head
towards right. This is because, aftera zero is replaced, we have to replace the coresponding
1 so that number of zeroes matches withnumber of 1's,
2. Search for the leftmost 1 and replace it by the symbol Y and move towards left (soasto
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.
Consider the situafion
XX00YY11
1
95
where first two 0's are replaced by Xs and furst two I's are replaced by Ys. In this sitvation, the
read - write head points to the left most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1: Instate g, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form '
&qo, 0} = ((Iz;_ X, R
The resulting configurationis shown below .
XXX0YY1)
)
a4
Step 2 : Instate q;, we have to obtain the left - most 1 and replace it by Y. For this, letus move

the pointer to poinit to leftmost one. Whenthe pointer is moved towards 1, the symbols encountered
may be 0 and Y. rrespective what symbolis encountered, replace 0 by 0, Y by Y, remain in state

g, and move the pointer towards right. The transitions for this canbe ofthe form
d{q, 0)=(q, 0,R)
5(9; :-Y)x(‘:?l aYsR)

When these transitions are repeatedly applied, the following configuration is obtained.

XXX0Yyll

T
4,

7.8 FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Instate ¢,, if the input symbol to be scannedisa 1, then replace 1 by Y, change the
state to ¢, and move the pointer towards left. The transition for this can be of the form

5(?2 sl}w(q ZSYJL)
and the following configuration is obtained.
XXX0YYYH

T

q2
Note that the pointer is moved towards left. This is because, azero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left. _
Step 4 : Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for
the right most X. During this process we may encounter Y's and 0's . Replace Yby Y, 0 by 0,

remain in state g, only and move the pointer towards left. The transitions for this can be of the

form {5((}2,}’)3{{;2,}’,}:)
5(42a0)=(Qz 0,L)
The following configurationis obtained
XXX0YYYI
?
q1

Step 51 Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form
(g2, X)=(gs: X . K)

and the following configuration is obtained
XXXOYYY!L

)
4o
Now, repeating the steps 1 through 5, we get the configuration shown below :
- XXXXYYYY

t
dy
Step 6 : Instate g, , if the scanned symbol is Y, it means that there are no more 0's. f there are

10 zeroes we should see that there are no 1's. For this we change the state to g, , replace Yby Y
and move the pointer towards right. The transition for this can be of the form

TURING MACHINES 7.9

5(q9.Y)=(4;,7,R)
and the following configuration is obtained
XXXXYYYY
T
s
Instate ¢, , we should see that there are only Ys and nomore 1's. So, as we canreplace Yby Y
andremainin g, only. The transition for this can be of the form
8(qs.Y)=(gq5,¥ ,R)
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
4
CE]
Note that the siring ends with infinite number of blanks and sd, instate ¢, if we encounter the
symbol B, means that end of string is encountered and there exists n number of O's ending withn
number of 1's. So, in state ¢, , on input symbol B, changé the state to ¢, , replace BbyBand
move the pointer towards right and the string is accepted. The transition for this can be of the
form 6(q;.8)=(q4.8.R)

The following configuration is obtained
XXXXYYYYBB
')
g4

So, the Turing machine to accept the language I ={o” ™| n21}
isgiven by M ={0,5.1,0,94,B.F)
where
0= (@ a3} E=(01}; T={01X7 B}
go €O Isthe startstate of machine; B e isthe blank symbol.
F ={g,} isthe final state,
S is shown below.
(g, O = (g, X, B)
5(q4.0)=(q,,0,R)

7.10 FORMAL LANGUAGES AND AUTOMATA THEORY

5(q.,Y)=(q:,Y,R)
F(q,1) =(q2.Y L)}
5(q,.Y)=(q,,Y,L)
8{(g4,0)=(g,,0,4)
(g1, X)=(go.X,R)
8{go.Y)=(g:.Y . R}
5(q5,Y)=(g:.Y.R)

6(q5,B)=(q4,B.R)
The transitions can also be represented using tabular form as shown below.

) Tape Symbols (I') i
States 0 1 X Y B
9o (g, X, R) - - (g3, ¥, R} -
@ (4::0.8) (g2, ¥ 1) - (@, V. R) -
4 (¢,,0,L} - (90, X, B (g Y. 1) -
9 - - - (g3, 1, B (94: B, B)
s - - . . -

The transition table shown above can be represented as transition diagram as shown below :

Y/YR YL
0OR oL

To accept the string :

The sequence of moves or computations (IDs) for the string 0011 made by the Turing machine
are shown below :

TURING MACHINES 7.1

Initial ID :

go0011 |- Xg,011 |- X 0g,11
- Xq,071 - g, X0Y1
b XgoOY1 - XXq Y1
- Xyl b XXg¥Y
- X XYY o XXgeYY
- XXYqY - XXV
[~ XXYYBq,

(Final ID)

Example 2 : Obtain a Turing machine to accept the language L (4) = { 0" 1"2" {n 2 1}

Solution : Note that n number of 0's are followed by n number of 1's which in turn are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of (s by X's, next n number of 1's by Y's and next n number of 2sby
Z's, Consider the situation where in first two {'s are replaced by X's , next immediate two 's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(a).

XXOOYYI1ZZ22 XXOYY11Z2Z222 KXXKOYY 1127222
1 1 0
do - 4,
(@ (b) ©

_ FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In

state ¢, ,if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure 1(b) is obtained . The transition for this can
be of the form
5(g,,0)=(g1. X, R)
Instate g, we have to search for the leftimost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace O0by 0, Y by
Y and move the pointer towards right and remain in state g, only. The transitions for thiscan be

ofthe form 5{g¢,,0¥=(q,,0,R)
8{q,.Y)={q,¥.R)

7.12 FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c) is obtained. Instate ¢,,on encountering 1 change the

state 10 ¢, , replace 1 by Y and move the pointer towards right. The transition for this can be of
the form

§(q,.1)=(q,,7 ,R)
and the configuration shown in figure 2(a) is obtained

XXXOYYY1ZZ722 XXXOYYY 12222 XXXOYYYIZZZ2
7) t
41 P qs
@ (b) ©

FIGURE 2 : Various Configurations
Instate g,, we have to search for the leftmost 2. It is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Z by
7 and move the pointer towards right and remain in state ¢, only andthe configuration shownin
figure 2(b) is obtained. The transitions for this can be of the form
5(q1,1)=(42,1,R)
5(g,,2)=(q,,Z.,R)
fnstaie g,, onencountering 2, change the state to g, , replace 2 by Z and move the pointer
towards lefi. The transition for this can be of the form
8(g4,.2)=(g35,2,L)
and the configuration shown in figure 2(c) is obtained. Once the TMis instate g, ,it means that
equal number of 0's, 1's and 2's are replaced by equal number of X's, V's and Z's respectively.
At this point, next we have to search for the rightrost X to get leftmost 0. During thisprocess, it

is clear from figure 2(c) that the symbolssuch as Z's, 1,8, Y's, 0's and X are scanned respectively
one after the other. So, replace Z by Z, 1 by 1, Y by Y, 0 by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be of the form
§(q5,2)=(45.Z,L)
3{q;.1)=(gq5.1,1)
6{(q4.Y)=(g;,¥,L)
5{¢;.0)=(g5.0,L)
Only on encountering X, replace X by X, change the state 10 ¢, and move the pointer
towards right to get leftmost 0. The transition for this canbe of the form
8(gs5, X y=(g,.X,R)

TURING MACHINES 7.13

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZIZ

t
_ 4o
In state g, , if the input symbol is Y, it means that there are no ('s . If there are no ('s we

should see that there are no 1's also. For this to happen change the state to ¢, , replace Yby Y
and move the pointer towards right. The transition for this can be of the form
5(qo.¥ y=(g4.Y ,R)
In state g, search for only Y's, replace Y by Y, remain in state g, only and move the pointer -
towards right. The transition for this can be of the form

5_(‘}431,):(@4’st)
In state ¢, ,if we encounter Z, it means that there are no 1's and so we should see that there

* areno 2's and only Z's should be present. So, on scanning the first Z, change the state to g, ,
replace Z by Z and move the pointer towards right, The transition for this can be of the form
8(44.2)=(45,2,R)

But, instate ¢, only Z's should be there and nomore 2's. S0, as long as the scanned symbol
is 7, remain in state ¢, , replace Z by Z and move the pointer towards right. But, once blank
symbol B is encountered change the state to ¢, , replace B by B and move the pointer towards
right and say that the input string is accepted by the machine. The transitions for this can be of the
form 8(g5.2)=(g5.Z . R)
5(q5.8)=(g.B,R)
where ¢, is the final state. '
So, the TM to recognize the language = { 0"1"2"| n 2 1} is givenby

M ={Q,5,T.6.94,B.F)

where
Qm{QOHQHQE’QBv_‘?4’Q§9QG}_; ={0,12}
I'=4{0,1 2, X, 1, Z, B}; g, istheinitial state
B is blank character ; F={ g, }isthe final state

5 is shown below using the transition table.

7.14 FORMAL LANGUAGES ANDR AUTOMATATHEORY

r
States | 0 1 2 Z Y X B
g 149,-%R g, LR
g |9.%R |4,.YR g, YR
4, g,:1.R ig,.LL g, LR
g, | 4,,0.L g,, LL q,Z.L g, Y.L g, X,R
g, q.ZR1q, . X.R
4s g, LR (6. B, B
q,
The transition diagram for this can be of the form

YIY R LR

o0k IR omL

Example 3 : Obtaina TMtoacceptthelanguage L = {w]w «(0+1)%} containing the substring 001.

Solution : The DFA which accepts the language consisting of strings of O's and 1'shavingasub
string 001 is shown below

The transition table for the DFA is shown below:

TURING MACHINES

0 1
9 4, 94
4 P)
q, 4, 1
4 g, 4

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from lefi to right in only one direction, TM also processes the input string in only
one direction (unlike the previous examples, where the read - write header was moving in both
the directions), For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of O's and 1's with a substring 001 is shown

helow:
0 1 B

g, Q;:{LR G IsR -
4 qz,O,R 7,- 1, R -
4, Qz:O’R s LR _ -
qs QH(}’R Q;eIsR quBsR
4,

The TMis given by _

M =(0.5,7,0,9:.B,F)

where .

Qm {qa: [PRL/ PP P CL} 4 Z={0,1

T={0,1}; §- isdefinedalready
g, istheinitial state; DB blank character
F={ g, }isthe final state

The transition diagram for this is shown below.

7.186 FORMAL LANGUAGES AND AUTOMATA THEQRY

Example 4 : Obtaina Turing machine to accept the language containing strings of ('s
and 1'sending with 011,

Solution : The DFA which accepts the language consisting of strings of 0's and 1's ending
with the string 001 isshown below : .

The transition table for the DFA is shown below:

& 0 1

96 4, 4
4, g g
‘A _ g, 4
g, g, s

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by Oand 1 by | and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same { the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of (s and 1's ending with a substring 001 is
shown below :

TURING MACHINES

8 0 1 B
% 7..0.R g,» LR -
g, q,0,R g,» LR -
q, g,,0.R g,- LR .
q, q,-0,R g.> LR g..B. R
g, . - -

The TMisgivenby M =(0.5,1.8.9,.8.F)
where
0= {40 G04:o0, } 3 T=01} 5 T={0,1}
& - is defined already
g, istheinitial state ; B doesnot appear
F={ g, }isthefinal state
The transition diagram for this is shown below:

I/L,R OOR

Example 5 : Obtain a Turing machine to accept the language
L={wlwis evenand L= {a,b}}
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

a, b

B @

a,b

7.18 - FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DFA is shown below :

a b
s - g, 4
q, 4, g,

We have seen that any language which is accepted by a DFA is regular. Asthe DFA processes
the input string from left to right in only one direction, TM also processes the input string inonly
one direction. For each scanned input symbol (either a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing aby aand bby band the
read - write head moves towards right. So, the transition table for DFA and TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a's and b's having even number of symbols is shown below

& a b B
q‘a q;a&R 915b3R q;:BQR
d, QGSa’R ‘Ze’b’R -
N 4, " - -
The TMis givenby
M m(_Q,E,I”,é',qa,B,F}
where
Q={ g»a b I={gb} ; I={ab}

§ - isdefined already ; ¢, istheinitial siate
R does not appear ; F = { g, } is the final state

The transition diagram of TM is given by

#/a,R

TURING MACHINES 7.19

Example 6 : ObtainaTuring machine to accept a palindrome consisting of a's and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome. For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.

Step 1 : Move the read - write head to point to the first character of the string. The transition

for this can be of the form 5{g4.8)=(¢.B,R)
Step 2: Instate g,, if the first character is the symbol a, replace it by B and change the state
10 ¢, and move the pointer towards right, The transition for this can be of the form
6(q1,a)=(q,,8,R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbol should be a. The symbols scanned during this process are a's , b's and B. Replace a by
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

6(q;:a)=(q,,a,R)
F(g,.b)=(q,.b.R)
But, once the symbol B is encountered, chénge the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form
8(g2,B)=(¢;:,8,L)
Instate ¢, , the read - write head points to the last character of the string, If the last character
is a, then change the state to g, replace a by B and move the pointer towards left. The transitions
defined for this can be of the form

5(93’9):(‘31&8:1’)
At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

In state ¢, ,if the last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The
transition for this can be of the form

' §{(q,,B)={(q,,B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, 1o g,
and move the pointer towards right. The transition for this can be of the form
5(q:1,6)=(g5,B,R)

7,20) FORMAL LANGUAGES AND AUTOMATA THECRY

Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b. The symbols scanned during this process are a's,b'sand B. Replaceaby a,
b by b and move the pointer towards right. The transitions defined for this can of the form

8(q5.a)=(gs5,a,R)
F(qs,0)=(g5,0,R)
But, once the symbol B is encountered, change the state to ¢, replace Bby B and move
the pointer towards left. The transition defined for this can be of the form
&{q5,8)=(q6,B,L)
Tn state g, , the read - write head points to the last character of the string, Ifthe last character
isb, then change the state to g, , replace b by B and move the pointer towards left. The transitions
~ defined for this can be of the form

5(?6’27)&(?‘49331‘)
At this point, we know that the first character is b and last character is also b. Now, reset the
read - write head to point to the first non blank character as shown in step 5.

Instate g, , Ifthe last character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form _

_ 5(q4.8)=(q,,B.8)
Step 4: In state g¢,, ifthe first symbol is blank character (B), the given string is even palindrome
and so change the state to g, , replace B by B and move the read - write head towards tight. The
transition for this can be of the form

_ §(q,,B)=(q7.B.R)
Step 5: Resettheread - write head to point to the first non blank character. This canbe done

~ asshown below.

If the first symbol of the string is a, step 2 is performed and if the first symbol of ihe string is
b, step 3 is performed. After completion of step 2 or step 3, it is clear that the first symbol and the

Jast symbol match and the machine is currently in state g,. Now, we have to reset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain in state g, . During this process, the symbols encountered maybeaorbor B
{ blank character). Replace aby a, b by band move the pointer towards left. The transitions
defined for this can be of the form 5(q.,a)=(g4,a,L)

6(‘?4xb):=(qft!b?£)

TURING MACHINES 7.21

But, if the symbol B is encountered , change the state to ¢, , replace B by B and move the pointer
towards right. the transition defined for this can be of the form

6(q4,8)=(q,,B,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromes over { a,b } isgivenby M =(Q, ¥, &, ¢,,B.F)
where O= {49,,4,9,.9,,9,-9:-40:4,} 3 Z={a, b} ; I'={ab B}; g, istheinitial state
Bisthe blank character; F={ ¢, }; § is shown below using the transition table

r

) a b B

95 . - g,B, R
g, g,-B.R g, B,R 7,-B.R
q, g8 R g,, 5, R g,,B,L
4, g, 8, L - g,,B, R
q, g,,a L g,.b, L g,,B,R
q, g,» 8 R g,,b, R g,,B,L
4 - q.,-B, L g,-B, R
q, . - .

The transition diagram to accept palindromes over { a,b }is given by

BAB.R

The reader can trace the moves made by the machine for the strings abba, aba and agba and is
left as an exercise.

7.22 . FORMAL LANGUAGES AND AUTOMATATHECRY

Example 7 : Construct a Turing machine which accepts the language of aba over £={a,b}.

Solution : ThisTMisonly for L={aba}
We will assume that on the input tape the string 'aba’ is placed like this

a b a B Bl e

1\.
‘The tape head will read out the sequence upto the B character if "aba’ is readout the TM will
halt after reading B.

@ {a.2.R) . @ (bbR) @ (@aR)

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start state and ¢, is(a, a, R ythat is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

a b a B Bl ..
0
Again the transition between ¢, and ¢, is (b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

a b a B B
T

The TM will accept the language when it reaches to halt state. Halt state is always a accept
state for any TM. Hence the transition between ¢, and haitis (B, B, S). This means read B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L) or (B, B, R}
itis equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs suchas abb or
ab or bab there is either no path reaching to final state and for such inputs the T™ gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

TURING MACHINES

7,23

a b
Start (g,,0.8) - -
4, - {4,.5,R) -
4 - (4,,a.R) - -
g, - - (HALT, B, S)
HALT - - -

Inthe given transition table, we write the tripletin eachrowas :
{(Next state, output to be ?rinted, direction)
Thus TM can be represented by any of these methods.

Example 8 ; Design a TMthat recognizes the set L= {0 1"|n 2 0}.

Solution : Here the TM checks for each one whether two ('s are present in the left side. If it

rpatch then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {(*1"ln2 0}

7.24 FORMAL LANGUAGES AND AUTOMATATHECRY

Example 9 : Design Turing machine to recognize the palindromes of digits { 0, 1} . Give its state
fransition diagram also.
Solution : The construction is made by defining moves in the following manner.

i, The machine scans the first input symbol { either 0 or 1), erases (but remembers) it,
writes a blank symbol in place and changes state (g, or g,) -

i Tiscansthe remaining part without changing the tape symbol until it encounters b. I then
moves the read / write head a step left. If the rightmost symbol tallies with the lefimost
symbol, the rightmost symbel is erased. Otherwise T. M. haits. The read/write head
moves to the left until b is encountered. '

ii. The above steps are repeated after changing the states suitably.

The transition table is shown below.

Present State Tape Symbols
: 0 1 b
—3 q, bRy, bRq, bRy,
g, 0Rg, 1Ry, biq,
g, - 0Rg, 1Rg, bLg,
4 blg, - bRys
4. - blg, bRy,
qs 0Lqg, LLg, bRy

The transition diagram is shown in below figure.

0,06, R
LLR

FIGURE : Transition State Diagram for the Palindromes

TURING MACHINES 7.25

Example 10 : Design a Turing machine that accepts L = {a"b"{n2 0} .
Solution : The 1ogic that we use for the Turing machine {o be consiructed is,

The Turing machine will remember lefimosta, by replacing it with B, then it moves the tape head
right keeping the symbols it scans asitis, until it gets rightmost b, it remembers rightmost b, by
replacing it with B, and moves the tape head left keeping the symbols it scans as it is till it reaches
the B, on getting B, it moves the tape head one position right and repeats the above cycle if it gets
a. Ifit gets B instead of a, then it is an indication of the fact the string is of the form 44, hence
the Turing machine enters into the final state. Therefore, the moves of the Turing machine are
givenin below table .

. a b B
4o (g.. B, R) (9., B, R)
g, (4,59, R) (9.6, B (4.,8,1L)
7, : (¢:,B,L)
‘2 (q,.a,L) (q,.6,1) {g,: 8, 8)
4,

TABLE : Moves of the Turing Machine for the given language

Therefore, the Tllﬁﬂg TfiﬁC}}iﬁe M 4{‘]’0 sJysq2:93:94),{O, b}s{a sbsB}s§ 9 Bﬁ{q‘i }) » where iS
given above.
The transition diagram corresponding to the above Table is shownin below figure.

FIGURE : Transition Diagram for the above Table

7.26 FORMAL LANGUAGES AND AUTOMATA THEORY .

Example 11 : What does the Turing Machine described by the 5 - tupiszs.,
(qa 3(}) h ,Z, R)a(t?a »Zs qz ,0,?‘),(% L Ba (1’2 E] Bs R) ¥

(4,.0.q,.0, R). (4,,1,4,,, R) and (g,,B.q,,B,R) Dowhengiven a bit string
asinput ?

Solution ; The transition diagram of the TMis,

o1 R

FIGURE : Transition Diagram for the given TM
‘The TM here reads an input and starts inverting 0's to 1's and 1's to O's till the first 1.
After it has inverted the first 1, it read the input symbol and keeps it asitis till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next 1. It halts
when it encounters a blank symbol,

7.4 CONPUTABLE FUNCTIONS

ATuring machine is a language acceptor which checks whether a string x is accepted by a
language L. In addition fo that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢/ .

Example 1 : 2is represented as 2 . If a function has k arguments, i, iy, co.....dy., then these

integers are initially placed on the tape separated by 1's,2s 0°10 % 1 ... 10% .

Tf the TM halts (whether in or not in an accepting state) with a tape consisting of 0's for some m,
then we say that £(i,, i;,......dy) =m, where fisthe function of k arguments computed by this
Turing machine.

TURING MACHINES 7.27

Example 2 :
Consider a functioninC.
intsum (intx, inty, intz)

{ ints;
S=EXty+2Z;
return s;

Suppose this function is invoked using statement,

c=sum{2,3,4); _
After invoking sum (), ¢ will have the value 9. The same computation can be performed by
Turing machine also, Initially, the Turing machine will have the arguments of sum{) i.e., 2,3,40n
its tape as shown in figure (a).

Finite
Control
oflol1]|oicio|1io|ojoloeiBlBlB
L..WY_._.J Y v 4 A, _p)
2 . 3 4
(a) Before Computation

This Taring machine performs the sum of these arguments. After some moves it halis with the
tape containing value 9, as shownin figure (b). :

Finite
Controt
Pl .
sioloioclolololololB|BIB| BB
.. I
e ;
9
{b) After Computation

FIGURE : Elements on Tape to Compute Sum

Note that a Turing machine may compute a function of one argument, a function of two arguments
and so on. The Turing machine given in figure can perform sum of two arguments or three arguments
or in general sum of any finite number of argurnents.

7.28 FORMAL LANGUAGES AND AUTOMATA THEORY

If TM M computes function fof k arguments i then fneed not have a value for all different
k - tuples of Integers i, iy, ... iy AF Fip, iys oo i) is defined forall, i,... 7, , then we say fisa
{otal recursive function, otherwise we say fis partial recursive function. Total recursive functions
are analogues to recursive language because they are computed by TM that always halts. Partial
recursive function are analogues to recursively enumerable languages. Because they are computed
by TM that may or may not halt. Examples of total recursive functions, all common arithmetic
functions on integers, such as multiplication ete, are total recursive functions.

Example 3 : Construct Turing machine to find proper subtraction m - n is defined to be
m - n for m>»n and zero form <n.

Solution : The TM M = ({qo,dy» -ds}» (0, B> (0, 1, B}, &, o, B, #) defined below, started
with gn /¢ onits tape, halts with gn- on its tape. M repeatedly replaces its leading 0 by blank,
then searches right for a 1 followed by a 0 and changes the 0 to 1. Next, Mmovesleft until it
encounters a blank and then repeats the cycle. The repetition endsif

i Searching right for a 0, M encounters a blank. Then, then0'sin 0" 10" haveall changed 0
I'sandn+ 1 ofthe m O's have been changed to B. M replaces the n+ 1 I'sbya O and
n B's leaving m - n 0's on its tape.
i, Beginning the cycle, M cannot find a 0to change to 2 blank, because the first m O isalready
have been changed. Then n> m. Som-n="0. Mreplaces all remaining 1'sand ('s by B.
The function & is described below.
I‘ 6(‘?09 {}) o= (q: B’ R)
Begin the cycle, Replace the leading O by B.
2' 5(‘113 G) = (‘ha 03 R)
5(@132) = (Qz] 13 R)
Search right, looking for the first 1.
3' 5('2291} = (QZa 13 R)
800 = g5 1 L)
Search right past 1's until encountering a 0, change that to 1.
4‘ 5(4330) = (q:is 9& L}
5(@'3,?) = (q3a 1: L)
(g3, B) = (40, B, R}
Move left to ablank. Enter state g, to repeat the cycle.

5. &(qy,B)={(44, B, L)

TURING MACHINES 7.28

8gasly = (¢, B, 1)

6(¢4,0) = (94,0, 1)

5g4,0) = (46,0, R) _
Ifin state ¢, a B is encountered before a 0, we have situation (i) described above. Enter state
g.and move lefl, changing all 1'sto B 's until encountering a'B. This B ischanged back toa (),
state g, is entered, and M halts. |
6. - 6(g0.1) = (g5, B, R)

&(g5,0) = (g5, B, K)

8(gs,1) = (95, B, R)

_ 5(g5,B) = (g6, B, R)

Ifin state ¢, 2 1 is encountered instead of a 0, the first block of O's has been exhausted, asin
 situation (i) above. M enters state g, to erase the rest of the tape, then enters g, and halts.

Example 4 : Design a TM which computes the addition of two positive integers.

Solution : LetTM M =((Q, {0, 1, # }, 8,5) computes the addition of two positive integersm
and n. It means, the computed function f(m, n) defined as follows :

m+u{lf mnzl)
S mm) m{c (n=n=0)
1 on the tape separates both the numbers m and . Following values are possible form andn.
1. m=n=0 (#1#......istheinput),
2. m=0and n#0 { #10°% ... isthe input),
3. me0andn=0 (#0"14 - is the input), and
4. m=0 and n20 { #0™0"# ... s the input)

Several techniques are possible for designing of M, some are as follows :
{a) M appends (writes) m after n and erases the m from the left end.

(b) M writes 0in place of 1 and erases one zero from the right or left end . Thisis possiblein
case of n# 0 OF m =0 only. fm=0orn=01then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

7.30 FORMAL LANGUAGES AND AUTOMATA THEORY

1 is replaced by O
inadvance

0&(\ ' n=0
0.6, R ;
don Yoyl

%

6% 8 4L
(o)y 22

FIo

S

Binee, 1 is replaced by Gin
advance, so erase one Difn =0

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
AlangnageLoverthealphabet 5, iscallodrecursively ermerable ifthereisa TM Mithatacceptevery wond
inL and either rejects(crashes) or loops for every wordinlanguage L' thecomplement of L.

Accept (M) =L

Reject (M) + Loop M) =L’
When TM M is still running on some input (of recursively enumerable languages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider a language (a+b)*bb(a+b)*.

TM forthislanguageis, (@, 4, R) (o, 2, R)

(2 2,K)

FIGURE : Turing Machine for{a+b)*bb(a+b)*

Here the inputs are of three types.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. Allstrings without bb butending in b =rejects (M). When TM sees a single b, it enters

' state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.

Hence it is rejected. '

3. All strings without bb ending in ‘& or blank 'B'= loop (M) here when the TM sees lastait
enters state 1. In this state on blank symbol it loops forever.

TURING MACHINES 7.31

Recursive Language

Alanguage L over the alphabet ¥ is called recursive if there is a TM M that accepts every word
inLand rejectseverywordin L' L. e.,

accept (M) =1L
reject (M) =L/

loop (M) = 4.

Example :Consideralanguageb(a+b) ¥ . ltisrepresented by TM as :

FIGURE : Turing Machine forb(a+b)*

This TM acce;ﬁts all words begixming with o' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A ianguage accepted bya TM s said to be recursively enumerable languages. The subclass of

recursively enumberable sets (. €) are those languages of this class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According to church's hypothesis, all the fimctions which can be defined by human beings can be
cornputed by Turing machine. The Turing machine is believed to be ultimate computing machine.

The church's original staternent was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be

able to perform all algorithms. TM can perform what church asked, so they are possibly the
" machines which church described,

Church tied both recursive functions and computable fimetions together. Every partial rectrsive
function is computable on TM. Computer models such asRAM also give rise to partial recursive
functions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

7.32 _ FORMAL LANGUAGES AND AUTOMATATHEORY

1. Firstwe will prove certain problems which cannot be solved using TM.

2. IHchurches thesis is true this implies that problems cannot be solved by any computer or any
programming languages we might every develop. '

3. Thusin studying the capabilities and Timitations ofTilring machines we are indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computationand, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

a counter. Counters hold any non negative integer, but we can only distinguish between zero and
NON 2810 CouNters.

- Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We cantest whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

i Read-only Input $

zZi'plBi...!BlB|AL--

FIGURE : Counter Machine

TURING MAGHINES 7.33

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on
each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input bead, and the distance of the storage heads from the
symbol Z (shown here as d, and d,). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

- Bverylanguage accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one - counter machine
is a special case of one - stack machinei. ¢, aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes.

il. Withonetapebut muktzpie heads.

. With two dimensional tapes.

iv. Nondeterministic Turing machines.
Ttis observed that computationally all these Turing Machines are equa}iy powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary. :
4. Turing machine with ”fwo Way Infinite Tape
Thisis 2 T™ that have one finite control and one tape which exténds mﬁmteiy in both directions.

Input zg:ﬁ ?0 1 Accept/Reject
1 ' -
-------- HERRRERRERRN
' tape

FIGURE : TMwith infinite Tape

Tt turns out that this type of Turing machines are as powerﬁzi as one tape Turing machines whose
tape has a leftend.

7.34 FORMAL LANGUAGES AND AUTOMATATHEORY

2. Multiple Turing Machines :

Input Finite Accept/Reject
control
. F
wet _ p L1 1 11
ooz T T T 1 117
4
wes J VI 1T

FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Change state.

2. Printanew symbol on each of the cells scanned by its tape heads.

3. Moveeach ofits tape heads, independently, one cell to the leftor right orkeepit statzonary

Tnitially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Tu ring Machines :

A nondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scarmed by the tape head, the machine has a finite
number of choices for the next move, Each choice consists of a new state, a tape symbol to print,
and a direction of head motion. Note that the non deterministic TM is not permitted to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices. The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

TURING MACHINES 7.36

4. Multidimensional Turing Machines : @

"~ 3.Himensional T™M

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists ofa
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol, and moves its tape head inone of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axis, and
- the head is at the left end of the input.At any time, only a finite number of rows in any dimension

contains nonblank symbols, and these rows each have only a finite number of nonblank symbols
5. Muiltihead Turing Machines : ;

woput | e | AcCoRRIEH

cantrol

head 1 J ‘ hoad 1
nead2

‘ N
[TTITITITTIT]
1a

e

FIGURE : Multihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the state and on the symbol scanned by each head, In one

move, the heads may each move independently left, right or remain stationary. '
6. Off - Line Turing Machines : - '

Finite
Conwol

Gy T 1]
— 1]
O 2

n 1’"/T FT 1
FIGURE : Off - line Turing Machine

7.36 FORMAL LANGUAGES AND AUTOMATATHEORY

Anoff - line Turing machine is a multitape TM whose input tape is read - only. Usually we
surround the input by end markers, ¢ ontheleftand § onthe right. The Turing machine is not
allowed to move the input tape head off the région between ¢ and §

Off - line TM is just a special case of the multitape TM, and is no more powerful thanany ofthe
models we have considered. Conversely, an off - line TM can simulate any TM M by using one
more tape than M. The first thing the off - line TM does is copy its own input onto the extra tape,
and it then simulates M as if the extra tape were M's input.

7. - Multistack Machines :

A deterministic two - stack machine is a deterministic Turing machine with aread only input and
two storage tapes. If a head moves left on either tape, a blank is printed on that tape.

Multistack machine and counter machines are restricted Turing machines equivalent to the basic
model. : ' '

7.9 COMPARISON OF FM, PDA AND TM

Basically have discussed three models viz. finite automata or finite machines (FM), Pushdown

automata (PDA) and Turing machine (TM). We will now discuss the comparison between
these models, :

1. The finite machine is of two types - deterministic finite state machine and non deterministic
finite state machine. Both of these DA and NFA accept regular language only. Hence both
the machines have equal power i, . DFA = NFA.

2. Wehave then learn push down automata again, pushdown automata consists oftwo types of
models deterministic PDA and Non deterministic PDA. The advantage of PDA over FAis
that PDA has a memory and hence PDA accepts large class of languages than FA. Hence
PDA has more power than FA. The non deterministic PDA accepts the language of context
free grammar power of DPDA is less than NPDA as NPDA acceptsa larger class of CFL.

3. Theclass of two stack orn - stack PDA has more power than one stack DPDA or NPDA.,

- Hencetwo - stack / n - stack PDAS are more powerful.

4. Turing machines can be programmed. Hence TM accepts very very large class of languages.
TM™, therefore is the most powerful computational model.

TM > PDA > FM
TM accepts regular and non - regular languages ; context free and context sensitive languages as well,

TURING MACHINES 7.37

REVIEW QUESTIONS

Q1. Explain Turing machine ,
Answer :
For Answer refer to Topic: 7.2, PageNo: 7.1
Q2. Differentiate between TM and PDA.
Answer ;
For Answer refer to Topic: 7.2.5, .Page No : 7.6.
Q3. Obtain a Turing machine to acceptthe language £ = {0 "1" {nz 1} .
Answer ;

For Answer refer to example - 1 , Page No: 7.6.
Q4. Obtain a Turing machine to accept the fanguage L (M) = { 0" 1"2" [n2 1}
Answer :
For Answer refer to example - 2, Page No 1 7.11.
Q5. Obtaina TM to accept the language L ={w|w «(0+1)*} containing the substring 001.
Answer !
For Answer refer to example - 3, Page No : 7,14,

Q6. Obtaina Turing machine fo accept the language containing strings of 0O's
and 1's ending with 011.

Answer :

For Answer refer to example - 4 , Page No : 7.16.
Q7. Obtain a Turing machine to accept the language L ={ wiwis evenand L= {a, b} }
Answer :

For Answer refer to example - 5, Page No : 7.17,
8. Obtain a Turing machine to accept a palindrome consisting of a's and b's of any length.
Answer !

For Answer refer to example - 6, Page No : 719,

7.38 FORMAL LANGUAGES AND AUTOMATATHEGRY

Q9. Construct a Turing machine which accepts the language of aba over T=f{a,b}.
Answer @

For Answer refer to example - 7, Page No 1 7.22.
Q10. Design a TM that recognizes the set L= {0"1"[n 2 0} .

Answer :
For Answer refer to example - 8, Page No 1 7.23.
Q11. Design Turing machine to recognize the palindromes of digits { 0, 1} . Give its state transition
diagram also.
Answer :

For Answer refer to example - 9, Page No : 7.24.
Q12. Design a Turing machine that accepts L = {a"b"|n= 0} .

Answer ;

For Answet refer to example - 10, Page No : 7.25.
(Q13. What does the Turing Machine described by the 5 - tuples,

(QG 505 '519 915 R)S(Ql} 911 Q1 30: r)s(qo 339 gz 383 R) v
(9,50,g,,0, R), (g,,1.9,,L R) and {(g,,8.4,,B,R)}. Do when given a bit string

asinput ?
Answer :

For Answer refer to example - 11, Page No : 7.26.
Q14. Write a short nofes on computable functions,
Answer :
For Answer refer to Topic : 7.4, Page No 1 7.26.
Q15. Construet Turing machine to find proper subtraction m - n is defined to be m.-n for
m>n and zero form<n.
Answer :
For Answer refer to example - 3, Page No 1 7.28.
(Q16. Design a TM which computes the addition of two positive integers.
Answer :
For Answer refer to example - 4, Page No : 7.29.

TURING MACHINES 7.39

Q17. Write about recursively Enumetable Languages .

Answer :

For Answer refer to Topic : 7.5, Page No : 7.30.
Q18. Explain about church’s Hypothesis.

Answer ;

For Answer refer to Topic: 7.6, Page No: 7.31.
Q19. Explain about counter machine with a neat diagram.
Answer :

For Answer refer to Topic : 7.7, Page No : 7.32.
Q20. List and explain various types of Turing Machines.
Answer : |

For Answer refer to Topic : 7.8, Page No ; 7.33.

7. 40

FORMAL LANGUAGES AND AUTOMATA THECRY

OBJECTIVE TYPE QUESTIONS

The no.of symbols necessary to simulate any TM with m symbols & » statesis
(@) dmn+m (b) mn (¢) 8mp+4m (d) m+n
Find the false statement. |

(a) Turing machine is simple mathematical model of general purpose computer.

(b) Turing machine is not capable to performing any caleulation which can be performed
by computer

(¢) We construct Turing machine to accept a given language

(d) We construct Turing machine to carry out some algorithm

Which of the following classes of Turing machine is not equivalent fo the class of standard
Turing machine?

(a) Non-deterministic Turing machines

{(b) Turing machines with stay option

{¢) Turing machines with semi-infinite tapes

(dy All ofthese '

Choose the correct statements

(a) Every recursive language is recursively enumerable

(b) Lia"p" ™y isrecursively enumerable

_{c)Recursive languages are closed under union

(Al

A TM is more powerful than Finite state machine because

{a) it has the capability to remember arbitrary long input symbols

(b) tape movement is confined 1o one direction

{c) it has no finite state control

{(dynone

An Finite state machine can be considered tobe a TM

(a) a finite tape length, rewinding capability and bi-directional tape movement.
(b) a finite tape length, without rewinding and bi-directional moverment

(¢) a finite tape length, without rewinding capability and unidirectional tape movement
(d) afinite tape length, with rewinding and unidirectional movement

TURING MACHINES 7.41

7. Tuing machines can move how in memory?

{(a) It cannot move. (b) forward and backward
- (¢) backward (d) forward
8. Turing machines use what as their memory?
(a) infinite tape (b) finite tape
{c)RAM {(HROM
9. Turing machines can domseeemems '

(a) less than areal computer can do
{b) everything that areal computer cando
{c) morethan areal computer can do. |
{d) Nothing
10. Turing machines are similar to finite automaton but have —wmr--
(a) unlimited and read-write rhemgry
(b) finite and read-write memory
{c) unlimited and read-only memory
(d) finite and read-only memory.
11, Comparing TM and computers we find
(a) They cannot be compared
{b) Both are Equivalent
(¢) T™M have more computational power
{d) Computers have more computational power
12, Theclass of TMs is equivalent to the class of

(a) Type 3 Grammars {(b) Type 2 Grammars
{c) Type 1 Grammars (&) Type 0 Grammars
13. Theclass of unrestricted languages corresponds to
(a) FA (b)PDA {c)L.BA (dyT™
14, Any TM with m symbols &n states can be simulated by another TM with just 2
symbols & less than

{a) mn states (b) 8mn+4 states {c) 4mn+8 states (d) 8mn states

7.42

FORMAL LANGUAGES AND AUTOMATA THEORY -

13

16.

17.

18,

19.

20.

Which statement is false?
(d) Turing machine is simple mathematical model of general purpose cornputer.

(¢) Turing machine is not capable of performing any calculation which can be performed
by computer

(b) We construct Turing machine to accepta given language

(2) we construct Turing machine to carry out some al gorithm

By giving Turing machine more complex power we can increase the power of the Turing
Machine '

(a) Absolutely False (b} Maynotbe True

(c) May be True (d) Absolutely True

The definition of Turing machines is robust because.....

(a) Turing machine has nothing to do with robustoess.

(b) certain changes (such as many tapes) result in machines of equivalent power.

(¢) turing machines will not crash for any input string.

(d) functional testing of turing machines finds no errors.

A Turing machine computes by going from one configuration to another. We say that
configuration ¢ yields configuration C; if the Turing Machine can legally move from

(a) an infinite number of steps
(b) asingle step

(c) a finite number of steps

{d) none of the above

In a Turing machine for a stafe q and two strings « and v over the tape alphabet writing
'uge’, specifies that the current state i8 g----—-

(a) the tape contents are uv, and the current head location is the first symbol of v.

(b) the tape contents are uv , and the current head location is the first symbol ofu.

{¢) the tape contents are #gv, and the current head location is the first symbolof v.

(d) The tape contents are ugv, and the current head location is the first symbol of u.
Turing machines output accept if they enter an accept state. When do Turing machine
output reject? : '

(a) Never

(b) When they enter a reject state

(c) When they never end

(d) When they are not in an accept state and halts

TURING MACHINES 7.43

21, Considerthe Turing Machine M described the transition table.

Present Tape Symbols

State 3 | X y b

9 XRy2 - bRys
2 0bR,, g3 - xRy

4 0L,4 - XRys xRz

4 0Lyq : Xqu

qs XRys | DRys
ds |

g5 isthe final state.

Refer to the Turing Machine whose transition diagram is given above. What is the final ID
when string 011 is processed?

(a) xygs1 (b) xygeyx (©) wyybgs - (D) xygs1
22. Consider the transition table of a Turing machine ;
Present State Tape symbols
b 0 1
@ Ly, | ORy
g2 bRy3 | 0Ly o
@ bR bR,s
a4 ORys ORps | 1Rpy
qs 0Lgs
gs isthe final state.
Computation sequence of string 00 leads to?
(@Emor (b) bbbb,50000 (c) bbb,5000 (d) bb,500

23. The grammar generated by production rules $ > aSBc|abe, ¢B—> Be, aB > aa is
(@) a"p"" ns 0 (b) a™"c",n>0

() "B nz0 Ad) g™ w1

FORMAL LANGUAGES AND AUTOMATA THEORY

24.

23,

26.

27.

28.

29.

30.

3L

The grammar generated by production rules § -» 4| Se, 4> abjadb is
(@) AW 020 and ¢>0 (B) &' n>0 ande>0

{C) &' 120 and c 20 (d) &b ,n>0 andc20

Consider a new type of turing machine where the head can move left and move right but
cannot stay put. This new type of turing machine is.........

(2) not comparable.

(b) More powerful than the original Turing mahcine
() equivalent in power to the original Turing machine
(d) less powerful than the original Toring maheine

The statement "Standard TM accepts the same languages as are accepted by a stay ™"
is

(a) Always false. (b) True for all languages
(¢) True only if Tanguages is regular (d) True only if languages isa CFL.
Find the false statement

(a)Standard TM is equivalent to linear bounded automata

(b) Standard Turing machine(TM) is equivalent to nulti tape TM

(¢) Standard TM is equivalent to non deterninistic TM
{d)None

Which of the foliomng is true: Read Write head canmove
(a) to the left of right endmarker n LBA

(b} to the right of right endmarker in LBA

(c)to the right of left endmarker mn LBA

(dito the left of Teft endmarker n LBA

LBA s

(a) restricted T.M. from both sides () unrestricted T.M.

(c) restricted T.M. from one side {d)none

Which automata is associated with Context Sensitive Language? (Give the best answer)
(a) Linear Bounded Automata (b) Pushdown Automata '

() Finite Automata (d) Turing Machine

Refer to the Turing Machine whose transition diagram as given above in question 21,
What is the final D when string 0011 is processed?

(a) xygsl (b) xygeyx (€} xxyybgs {d) xvgel

TURING MACHINES

7.45
~ 32. Which ofthe following is not a variant of the standard Turing Mahine
{a) Universal Turing Machine {b) Linear Bounded Automata
{c) Pushdown Automata {d) None of the above.
33. LetBbealinear bounded automata. Then grammar corresponding to L(B) is
(a) Regular grammar (b) Unrestricted grammar
{¢) Contextfree language {d) Context sensitive language
34. TheLinear bounded automata is a variant of
{#) Finite Automata {b) Turing Machine
(¢} Pushdown Automata {(d) None of these
35. Non-Deterministic Turing Machines are more powerfill than deterministic Turing Machine
(a) Absolutely False (b} May notbe True
{c) May be True (d) Abschrtely Troe
36. ‘Many models of general purpose computation exist. Some are very similar to the original

Turing machine, others can be very different than the original.
All of these models are equivalent in power if....
(a) there is no model if everything is equivalent to evexyt‘m ng elsel

(b) they have unrestricted access to unlimited mermory, and satisfy certain reasonable
requirements like performing only a finite amount of work in a single step.

(c) satisfy certain reasonable requirements like performing only a finite amount of work in
a single step.

{d) they have unrestricted access to unlimited memory.

ANSWER KEY

LB 26 3 40) 5@ 6 7T(a) 8 9 10.0)
1) 124d) 13.0) 1408) 15(d)16.) 17.0) 18.4a) 19.4d) 20.b)
21.(b) 22.(b) 23.(5) 24.b) 25.ac)26.(b) 27.(a) 28(a,c) 29.(a) 30.(a)
31(b) 32.(¢)33d) 34(b) 35.(8) 36.b)

Formal Languages And Automata Theory

UNIT 5

COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

DUNDIGAL, HYDERABAD - 500 043

8

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

o Chomsky hierarchy of Languages

« Linear Bounded Automata and CSLs
o LR{0)Grammar

« Decidability of problems

o HTMand PCP

e P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

{a) Type O

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
free from any restriction. All grammars are type 0 grammars.

Example : productions of types 4S — aS, B — 85,8 —e are type 0 production.
(b} Type 1

We apply some restrictions on type 0 grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose a type 0 production yad —» yf5

and the production & —» £ is restricted such that | o{<| fland S#<. Then these type of

productions is knownas type 1 production. if all productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).

8.2 FORMAL LANGUAGES AND AUTOMATA THEGRY

In CSG, there is left context or right context or both. For example, consider the production

oA B> caff . Inthis, ¢ isleftcontextand g isright contextofAand A is the varigble which is
replaced. ' '

The production of type § - « isallowed intype 1if eisin1(G), but S should not appear on
right hand side of any production.

Example : productions § — 4B, —» €,4 — ¢ aretype | productions, but the production
oftype A -» S¢ isnotallowed . Almost every language can be thought as CSL.

Note : If left or right context is missing then we assume that & is the context.
(c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

o, B eV UI)* is known as type 2 production. A grammar whose productions ate type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by

this type of grammars is called context - free languages (CFL).
Example : §->8+8,5->S*S, §-»id are type 2 productions.

(d) Type3

Thisis the most restricted type. Productions of types 4> g or 4 —> aB{Ba ,where 4, BeV

and a e 5 are known as type 3 or regular grammar productions. A production of type § — ¢ is
also allowed, if isin generated language.

Example : productions §—> a8, S—» ¢ aretype 3 productions.
Left - linear production : Aproductionoftype 4> Ba iscalled left - linear production.
Right-linear production : Aproductionoftype 4 — aB is called right - inear production.

Aleft - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.

COMPUTABILITY THEORY 8.3

Aproductionoftype 4> w O 4~>wB OF 4—> Bw ,where w e £* canbe converted into
the forms 4 -» g OF 4—»gB OF 4> Ba,whered,BeV and s 5.

Example : 4> 10A canbereplaced by productions 4> 18, where B is a new variable
and B->04.

In general, if 4-> aa;....... a,a,, B, then this production can replaced by the following
productions.

A-»a; By,
B —a, B,

B, —>a; B;,

Bn ¥ Gy B
Similar result is obtained for left - linear graramars also.

8.1.1 Hierarchy of grammars

Type 0 or Phrase structured grammar

U Restrictions applied
Type 1 or Context - sensitive grammar

4 Restrictions applied
Type 2 or Context - free grammar

g Restrictions applied
Type 3 or Regular grammar

Example : Considerthe following and find the type of the grammar.
(a} $—> Aa, A-—>c|Ba, B> gbe
(b} S§->aSaic
(¢) S—> aAS | SBb, AS —> adS|aS, SB -> Sh|SBb

8.4 FORMAL LANGUAGES ANDAUTOMATATHEORY

Solution :
{a) Production Type
S -> Aa Type 3
A - ¢ Type 3
A -y Ba Type 3
B —y abe Type 3
So, given productions are of type 3 and hence grammar is regular.
(b) '
S iy aSa Type 2
S Y c Type 3

So, given productions are of type 2 and hence grammar is CFG.
Note : We select the higher type and higher type between type 3 and type 2 istype 2).

{©) S - aAS Type 2
S ~> SBb Type 2
AS - aAS ' Type 1
AS —> as ' Type 1
SB - Sb Type 1
SB - SBb Type 1

So, given productions are of type 1 and hence grammar is CSG.
8.1.2 Relation Among Grammars and Languages

Type 0 is the super set and type 1 is contained in type 0, type 2 is contained in type 1, and
type 3 is contained in type 2.

Type 0 Type L Type 2¢ Type3
8.1.3 Languages and Their Related Automaton

Turing Machines

Linear Bownded Autamaton

Poshdown Antemosten

P Pinite A ton

FIGIURE : l.anguages and their related Automaton

COMPUTABILITY THECORY 8.5

8.2 LINEAR BOUNDED AUTOMATA

" The Linear Bounded Automata (LBA) is a model which was originally developed as a model for
actual computers rather than modet for computational process. A linear bounded automatonisa
- testricted form of a non deterministic Turing machine.

Alinear bounded automatonis a multitrack Turing machine which has only one tape and thistape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie doos. For LBA halting means accepting. In LBA computation is restricted foan area
bounded by length of the input. This is very much similarto programming environment where size
of variable is bounded by its data type.

<} a|ajalb b bl >

5

Leftend Rightend
marker marker

Finite
control

FIGURE : Linear bounded aufomaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by < and >. '

A linear bounded automata can be formally defined as

LBA is 7 - tuple on deterministic Turing machine with
M=(Q, %, T,8, 4o Qaccen» Troject) having
Two extra symbols of left end marker and right end marker which are notelementsof 1.
2. Theinput Ties between these end markers. _
3. The TM cannot replace < or > with anything else nor move the tape head left of <or
rightof >.

oy
M

8.6 FORMAL LANGUAGES ANDAUTOMATA THEQRY

Example : We canconstruct alanguage [= {o" " ¢"|{n =1} using LBAas follows.

< a ai b b ¢ ™ >

d

Finite
control

The input is placed on the input tape which is enclosed within left end marker and right end
marker. We will apply the simple logic as : when we read 'a’ convertit to A then move right by
skipping all a's. On encountering first b we will convert it to B. Then moveright by skipping all
b's. Onreceiving first ¢ convertitto C. Move in left direction unless you get A. Repeat the above
procedure and convert equal number of a's, b's, and ¢'s to corresponding A's, B's and C's.
Finally move completely to the rightmost symbol if it is ™' a right end marker,then HALT. The
machine willbe:

{B.8.F}
(CCRY
®BR) _ ErY e
&/ D,
©aR) boL
LX) {bb,R} CoL
@(<,<,a) o AR @{bﬁ,ﬂ) éé{cm.)“ o
(A. A, R)
Simuiation : Consider input aabbee
< aabbee > Move right.
t
< aabbee > Convertto A, moveright.
?
< Aabbee > Moveright.
)l o
< Aabbee > Convertto B, moveright.
T
< AaBbec > Moveright.

T

COMPUTABILITY THEORY

8.7

< AaBbee >
0
<AaBbCc >
T
< AaBbCe >
T
< AaBbCe >
1
< AaBbCc >
T
< AaBbCc >

0
<AABBCc >

t
<AABbCc>

T
<AABBCc>

T
<AABBCc>

1\
<AABBCC>

T
<AABBCC>

1
<AABBCC>

0

<AABBCC>
T

Convert to C, move lefl,
Move left

Move left.

| Move ledl,

Move right.

Convertto A, Move right.

Moveright.

Convert to B, Move right.

Moveright.

Convert to C, Move left.

Move left continuously by skipping B's.
Moveright.

Ifwe get B, we will move right fo check whether
all b's and ¢'s are converted to Band C.

If we get right end marker > then we HALT by
accepting the input aabbec.

Thus in LBA the length of tape exactly equal to the input string and tape head cannot move left
of '<right of >,

88 FORMAL LANGUAGES AND AUTOMATA THEORY

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

The context sensitive languages are the languages which are accepted by linear bounded axtomata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules:

i, The number of symbols on the left hand side must not exceed number of symbols on the
right hand side.

i, Therule oftheform 4 —e isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive languageis L = {a" " ¢" | n 2 1} . Thecontext sensitive
grammar can be written as

S - aBC

S i SABC
CA -3 AC
BA AB
CB - BC
aA N aa

aBB —> ab

bB - bb

bC - be

cC -3 ce

Now to derive the string aabbce we will start from start symbol :

S ruleS SARBC
SABC eSS —» aBC
aBCABC rule CA — AC
aBACBC _ rule CB - BC
aBABCC rule BA - AB
aABBCC ruleaA - aa
aaBBCC raleaB -» ab
aahBCC rule bB — bb
aabbCC rule bC — be
aabbeC ruecC — ce

aabbee

COMPUTABILITY THEORY

Note : The language " »" ¢" where 5 » 1 isrepresented by context sensitive grammar but it

cannot berepresented by context free grammar.

Every context sensifive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be

helpful understanding it,

[n the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. If that siring is derived we say that it is a valid string.

Example :

E->E+T|T
T—>T*F| F
F>id | (E)

Suppose we want to check validity of a string id +id * id . Itsrightmost derivation is

E =

R (R R

FIGURE(a) . Rightmost Derivation of id + id * id

Since this sentence is derivable using the given grammar. itis a valid string. Here we have checked

Es+T

E+T*F
E+T*id
E+ F*id
E+id*id
T+id *id

F+id*id

id + id ¥id

the validity of string using process known as derivation.

8.10 FORMAL LANGUAGES AND AUTOMATA THEORY

The validity of a sentence can be checked using reverse process known as reduction. In this
method for a given x, inorder to know whether it is valid sentence of a grammar or not, we start
with x and replace a substring x; with variable Aif 4 X, isa production. We repeat this
process until we get starting state.

Consider the grammar,

E-» E+T\|T
E-— T*F|F
F - (E)| id

Letus check the validity of string id +id * id.

F+id * id Replaced F withid since F — idisa production
T +id * id Replaced F with T using production T > F

E +id * id Replaced T with E using productionE —> T
E+T * id Replaced id with F using production ¥ — id

E+ T * id Replaced F with using production T — F

E +T* F Replaced id with F using production F — id
E+T Replaced T * F with T using production T - T *F
E Replaced E + T with E using production E - E+T

FIGURE(b): Reductionofid+id*id

Here since we are able to reduce to starting state E, so that id +id * id is accepted by the given
granymar. - :

Note : There may bedifferent ways of selecting as substring in sentential form. In our reduction
we have used reverse of rightmost derivation shown in Figure(a).

The substring in right sentential form which causes reduction to starting state is known as handle
and corresponding production is known as handle production. For example, intight sentential
form E +T * id of Figure(b) we can either replace substring T with Fusing T ->F or replace
id with Fusing F > id. If we use the first reduction, the sentential form will become E+F *id.
This will not lead to starting state. Hence here F is not handle. Where as if we reduce, the
sentential form will be E-+T * F which can be reduced to starting state using subsequent reductions.
ence here Fisahandleand F > idis handle production.

COMPUTABILITY THEORY ' 8. 41

In reduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammiars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammars, Depending on the number of look ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0), LR(}).... and in general LR(k) grammars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse
order (we say reverse order because we use reduction which is reverse of derivation) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols. '

Before defining LR(0) grammars, let us know about few terms.

Prefix Property ; Alanguage L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix

property. Hence L$ = { w§|w e L} isa DCFL with prefix property whenever wis inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
L$ ={cat$, cart$ bat$ art§,car$}

Here, cart § is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present in L. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
gramInar.

LR items

Anitem fora CFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4—» € 4->. isanitem.

8.12 FORMAL LANGUAGES AND AUTOMATA THEORY

Example :

Consider the grammat,
§-> §
S cAd

A—> ale

The items for this grammar are,
St .8

- S
S > .cAd
S—> ¢.Ad
S-> cdd
S cdd.
A—> .
4> a

A .
Anitem indicates how much of a production we have seen ata given pointin Parsing process.

Valid tem : Wesayinitem 4 - o . § is valid fora viable prefix (i. ¢., most possible prefix)

v there is arightmost derivation § = édw = JafBwand Sa=y.
r m

Example :

S — cdr

A = ar
The sentence cart belongs to this grammar,
S#m CAt = cart

The possible or viable prefixes for cart are { c; ca, car, cart } forthe prefixca 4 > a.r. isvaiid
jtem and for viable prefix car 4 = ar isvaliditem.

COMPUTABILITY THEORY 8.13

Computing Valid ltem Sets

The main idea here is to construct from a given grammar a deterministic finite automata to recognize
viable prefixes. We group items fogether into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

Tt 1is a set of items for a grammar G then closure () is the set of items constructed from I by two
rules. : '
1. Initially, every item 1is added to closure (1),
2. ¥ 4->a.Bp isinclosure (and g § isproductionthenadditem g § tol,ifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example : Forthe grammar,

§ - 8
S ->» cdd
4 —» g

S -> § issetofoneiteminstate Ithenclosure of Tis,
L 8 - .8
S — .c4dD

The first item is added using rule 1and § > .c4d is added using rule 2. Because *. 'is

followed by nonterminal S we add items having SinLHS.In § - .c4d '."isfollowed by
terminal s0 1o new ifem is added.

Goto Function : It is written as goto { I, X) where L is set of items and X is grammar symbol.

If 4 ->a.Xf3 isinsomeitem set Ithen goto (1, X) will be closwre of set of all item 4 —» a.X B.

8. 14 FORMAL LANGUAGES AND AUTOMATATHEQORY

For example,
gow {1}, ¢)
closure (S -»¢. 4d)
i.e., S-»c.dd
A-—>» a

now let us see how all the valid sets of items are computed for the given grammar inexample 1.

Initially 7, will be the starting state. It contains only the item S»>. § we find its closure to find set
of items in this state for cach state 7, and symbol g after’.” we apply goto (1, B), goto (/,, 5}

and find its closure. This constitutes next state 7, . We continue this process goto (/,,q) untilne
new states are obtained.

Ip: 8T .8

S > .Ad
L:§8— 8
It 8-> cdd

A a
goio (Z,, 4A)

I: S—>cdd
goto (1, a)

;i Ad-—ra
goto {1,,d)

Is: §->cdd.

This process is stopped because all possible complete items are obtained. A complete item s the
one which has dot in rightmost position.

Ecahitem set corresponds to a state of DFA. Hence, the DFA for given grammar will have six
states correspondingto 7, o Is.

COMPUTABILITY THEORY 8.15

DFA:

S-rohd-
|

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. Itsstart symbol does not appear on the right hand side of any production and

2. Foreveryviable prefix 7 of G whenever 4 —» « is a complete item valid for 7, thenno
other complete item nor any item with terminal to the right of the dotis valid for 7 . _

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'-> § s

known augmented grammar.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets 1,, I, and J; each containinga complete item, there areno other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFA for the given Grammar

8. 16 FORMAL LANGUAGES AND AUTOMATATHEORY

DFA for grammar,

S—>»L=R
§> R
L -»*R
L > id
R L

i The first condition of LR(0) grammar is satisfied.

i Considerstate 7, and viable prefixes of L=R { L, L=and L=R } forprefix IR —» L.

is a complete item and there is another item having the prefixLie,8 - L.=R
foliowed by terminal. Hence, violating second rule. So it isnot LR(0) grammar.

8.5 DECIDABILITY OF PROBLEMS

In our general life, we have several problems and some of these have solution also, but some
have not. Simply, we say a problem is decidable if there is a solution otherwise undecidable.

Example : consider following problems and their possible answers.

1. Does the sun rise in the east 7 (YES)

2. Does the earth move around the sun 7 (YES)

3. What is your name ? (FLAT)

4. Will tomorrow be a rainy day 7 (No answer)
We have solutions (answers) for all problems except the last. We can notanswer the last problem,
because we have no way to tell about the weather of tomorrow, but to some extent we can only
predict. So, the last problem is undecidable and remaining problems are decidable.

So, if a problem can be solved or answered based on some algorithm then it is decidable otherwise

undecidable. :
Problem

Selution - No solution

L

Decidable Undecidable

COMPUTARILITY THEORY . 8.17

Tach problem P is a pair consisting of asetand a question, where the question canbe applied to
each element in the set. The set is catled the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 3. },
Instance : L={w:wisawordover g endinginabb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. ¥slanguage is recursive, Of
2. Ithas solution

Other probiems which do not satisfy the above are undecidable. We restrict the answer of
decidable problemsto " YES" or "NO" . I there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO but not both. Restricting the answers to only
"YES" or "NO" we may not be able to cover the whole problems, still we cancovera lotof
problems. One question here. Why weare restricting our answers to only "VES" or "NO"? The
answer is very simple ; we want the answers as simple as possible. '

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
“YES" or "NO" then problem is decidable."

. if for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidabie Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FAacceptregular language ?

2. Isthe power of NFA and DFA same ?

3. 7, and I, are two regular languages. Are these closed under following :
(@ Union
(o) Concatenation
{c) Intersection
(d) Complement

8.18 FORMAL LANGUAGES AND AUTOMATATHEQRY

©) Transpose
iy Kleene Closure (positive transitive closure)
For a given FA M and string w over alphabet 5, is w e L{ M) ? This is decidable problem.
ForagivenFM, is L(M) = ¢ ? Thisis adecidable problem.
For a given FAM and alphabet 5 ,is L(M)= £ *? Thisis a decidable problem.
For given two FA M, and M,, L(M)), L(M,) € S*,is L(M)= L(M;)? Thisis a
decidable problem, ' .
8. For given two regular languages I, and L, over some alphabet 5 ,is L, <1, ? Thisisa
decidable problem.

N o R

8.5.3 Decidable And Undecidable Problems About CFlLs, And CFGs

Pecidable Problems

Some decidable problems about CFLs and CFGsare given below.

If 7, and L, are two CFLs over some alphabet 3, then L, w L, is CFL.

If £, and L, are two CFLs over some alphabet 3, then L, £, isCFL.

IfLis a CFL over some alphabet v, then L*isa CFL.

If L, is aregular language, I, isa CFL then L, w1, isCFL.

If I, isaregular language, L, isa CFL over some alphabet ¥, then L,nL, isCFL.
Foragiven CFG G is L{(G) = ¢ ornot?

For a given CFQG G, finding whether L(G) is finite or not, is decidable.

For a given CFG G and astring wover 3, checking whether w ¢ Z(G) ornotisdecidable. '

e A Ul

Undécidabie Problems

Following are some undecidable problems about CFGsand CFLs .

1. Fortwo given CFLs I, and L,, whether I, n [, is CFL or not, isundecidable.

2. Foragiven CFL L over some alphabet 5, , whether complement of Li.e. E* -LisCFL or
' not, is undecidable.
3. Foragiven CFG G, is L(G) ambiguous ? This is undecidable problem.

4, Fortwo arbitrary CFGs G, and G, , deciding L(G,) r L(G,) = ¢ ornot, is undecidable.
S. For two arbitrary CFGs G, and G, , deciding L(G,) ¢ L{G,) ornot, is undecidable.

COMPUTABILITY THEORY 8.18%

8.5.4 Decidability and Undecidability About TM

We have considered TM as a most powerful machine that can compute anything, which can
recognize any language. So, from where undecidability comes and why 7 These questions are
really interesting, According to Church - Turing Thesis, we have considered TM as an algorithm
and an algorithm as a TM . So, for a problem, if there is an algorithm (solution to find answer)
then problem is decidable and TM can solve that problem. We have several problems related to
computation and recognization that have no solution and these problems are undecidable.

Partial Decidable and Decidable Probiems

A TM M is said to partially solve a given problem P if it provides the answer for each
instance of the problem and the problem is said to be partially solvable. If all the computations of
the TM are halting computations for P, then the problem Pis said to solvable.

A TM s said to partially decide a problem ifthe following two conditions are satisfied,
(a) The problem is a decision problem, and
(b) The TM accepts a given input if and only if the problem has an answer "YES" forthe
input, that is the TM accepts the language L= {x:xisaninstance ofthe problem, and
the problem has the answer "YES" forx }.

A'TM is said to decide a problem if it partially decides the problem and all its computations
are halting computations. . _

The main difference betweena TM M, that partially solves (partially decides) a problem
and aTM M, that solves { decides) the same problem is that M, mightrejectan inputbya
non - halting computation, whereas M, can reject the input only by 2 halting computation.

A problem is said to be unsolvable if no algorithm can solve it, and a problem is said to be
undecidable if it is a decision problem and no algorithm can decide it.

Decidable Problems about Recursive and Recursive Enumerable Languages

As we have discussed earlier that if a problem has a solution then it is decidable. In this section,
we will discuss some decidable problems about recursive and recursive enumerable languages.

1. The complement of a recursive language L. over some alphabet y isrecursive.

Proof : We will discuss aconstructive algorithim to prove that complement of arecursive language
is also recursive i. e. recursive languages are closed under complementation.

Aswe know that for all strings w « 7., 8 TM always halts and rejects those strings thatare -
notinl. So, " forall strings w ¢ 7, " is always decidable.

8.20 FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a TM M, which recognizes the language L. We construct another TM M based on
M such that M" accepts those strings which aze rejected by M. It means, ifMacceptsthen M'
does not. M’ rejects those strings that arc accepted by M. It means, all strings x ¢ are
accepted by M and for all strings w ¢ L ar¢ rejected . So, M also follows same kind of algorithm
_ ' to decide whether a string 1 « £, ornot. Hence, complement of recursive languageLie Z*-L
is also recursive. The logic diagram of M' is shown in Figure(a).

_ o1 Accept e Rejocl
.) ot AgCEDY

Reject

—

3 _ By A

Figure{a)
~ In general, recursive languages are closed under complement operation.

2. The union of two recursive languages is recursive.

Proof: Let Z, and L, be two recursive languages and Turing machines M, and M, recognize
1, and L, respectively shown in Figure(b) and Figare(c).

YES YES
mff}.i.._.. M, < _wﬁ_.p _Ma <
NG

NG
Figure{b) Figure{c)
We construct a third TM A, , which followseither A, or M, asshown in figure(d).
YES
M, > ¥ YES
W NO
" | YBS
My ” » NO
NO

Figure(d)

COMPUTABILITY THEORY 8. 21

TM M, accepts if either M, acceptsor M, accepts and rejects if either M, rejects or M,
rejects . Since, M, and M, are based on algorithms, so M; isalso based on the same kind of

algorithm. Therefore, union of two recursive languages L, and L, tsalsorecursive. In general,
recursive languages are closed under union operation.

3. Alanguage is recursive if and only ifits complementis recursive.
4. The union oftwo recursively enumerable languages is recursive enumerable.

Proof : Let I, and L, be two recursively enumerable languages and recognized by M, and
A, Turing machines, We construct another TM. M, which accepts either £, or L, . Now, as
we know the problem about recursive enumerable languages that ifwisnotin L, and 1,,then
M, can not decide. So, the problem of recursive languages is persistent with A, also. So,

N(M,) isrecursive enumerable language andhence I, U I, isrecursive enumerable 1anguageb
Tn general, recursive enumerable languages are closed under union opetation.

5. Tfa language L over some alphabet ¥ and its complement I = S*~ L is recursive
enmmerable, thenl. and 7 arerecursive languages.

Proof : We construct two Turing machines A4, for Land M, for . Now, we constructa
third TM M, based on M, and M, as shown in figure(e): T™M M, accepts w if TM' M,
accepts and rejects wif A, accepts. Itmeans,if wel, then wis accepted and if w ¢ then -
itis rejected. Since , for all w, either w is accepted or rejected. Hence, M; is based on algorithm
and produces either "YES" or "NO” for input string w, but not both. Itmeans, M, decidesall the

strings over ¥ . Hence,, Lis recursive. As we know that complement of a recursive language is
also recursive and hence J isalsorecursive.

YES 'f
S et VES
My e H
T T L NO :
1
ey NO §
B, et YES
L I YES i

Figure(e)

8.22 : FORMAL LANGUAGES AND AUTOMATATHEORY

6. We have following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where T the complement of L, then one ofthe following
istrue: :

(2) Both Land 7 arerecursive languages,

(b) Neither L nor T istecursive languages,

(¢) IfL is recursive enumerable but not recursive, then 7, is not recursive enumerable and
vice versa, ‘

Undecidable Problems about Turing Machines
Tn this section, we will first discuss about halting problem in general and then about ™.

Halting Problem (HP)
The halting problem is a decision problem which is informally stated as follows:

"Givena description of an algorithm and adescription of its injtial arguments, determine whether
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm. The amount of work done
in analgorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question

Given a program and an input to the program, determine if the program will eventually stop when
it is given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
a reasonable amount of time, we can not conclude that it won't stop. The questionis: "how long
we canwait ..., 7 . The waiting time may be long enough to exhaust whole life. So, we can ot
take it as easier as it seems to be. We want specific answer, either "YES® or Q", and hence
some algorithm to decide the answer.

