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Computational learning theory 
 

 

1 PAC Learning 
 

We want to develop a theory to relate the probability of successful learning, 
the number of training examples, the complexity of the hypothesis space, the 
accuracy to which the target concept is approximated, and the manner in which 
training examples are presented. 

 

1.1 Prototypical Concept Learning 
 

Consider instance space X, the set of examples, and concept space C, the set of 
target functions that could have generated the examples such that there exists 
a f C that is the hidden target function. For example, C could be all n- 
conjunctions, all n-dimensional linear functions, etc. 

The hypothesis space is the set of all possible hypotheses that our learning 
algorithm can choose from, where H is not necessarily equal to C. We consider 
our training instances to be S 0, 1 – including both positive and negative 
examples of the target concept – such that training instances are generated by 
a fixed unknown probability distribution D over X. Each training instance can 
be thought of as a (data, label) tuple, as below 

 

S = [(x1, f (x1)), (x2, f (x2))...(xn, f (xn))] 

 
In this setting, our goal is to determine a hypothesis h H that estimates f , 
evaluated by its performance on subsequent instances x X drawn according 
to D. 

Note the assumption that both training and testing instances are drawn from 
from the same distribution D, as it is important in the analysis that follows. 

 

1.2 Intuition 
 

Consider Figure 1, showing the space predicted by target function f and hy- 
pothesis function h, where points inside the circle are positive, points outside 
are negative, and the functions are given by 

h = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100 
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f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100 

 

Figure 1: f not equal h 

 
In this example, we have seen x1 in all positive training instances (even though 
it is not active in f ). Therefore, it is very likely that it will be active in future 
positive examples. If not, it is active in only a small percentage of examples, so 
the error should be small. 

We can therefore consider the error as the probability of an example having dif- 
ferent labels according to the hypothesis and the target function, given by 

ErrorD = Prx∈D[f (x) /= h(x)] 

 
2 Conjunctions 

 
Consider z to be a literal in a conjunction. Let p(z) be the probability that 
a D-sampled example is positive and z is false in it. In the example above, 
z = x1. 

 

2.1 Error Bounds 

Claim: Error(h) ≤     p(z) 
z∈h 

Proof 
Consider that p(z) is the probability that a randomly chosen example is positive 
and z is deleted from h1. 

If z is in the target concept, then p(z) = 0; f is a conjunction and thus z can 

never be false in a positive example if z ∈ f . 

h will make mistakes only on positive examples. A mistake is made only if z 
that is in h but not in f . In such cases, when z = 0, h will predict a negative 
example while f indicates a positive example. 

1Recall that h is a conjunction, and z is a literal, such that if – during training – we see a 
positive example where z = 0, z is removed from h 
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Therefore p(z) is also the probability that z causes h to make a mistake on a 
randomly drawn example from D. In a single example there could be multiple 
literals that are incorrect, but since in the worst case they are seen one-by-one, 
the sum of z bounds the error of h. 

We can also consider literal z h to be bad when p(z) >  є .  A bad literal, 
therefore, is a literal that is not in the target concept but has a significant 
probability to appear false in a positive example. 

Claim: It there are no bad literals, then Error(h) < ϵ 

Proof 

We  have  already  stated  that  Error(h)  ≤ p(z).  Given that |h| ≤ n – the 
z∈h 

hypothesis has at most the same number of literals as there are features – then 
n 

we know that the error cannot exceed 

Therefore Error(h) < ϵ. 
 

2.2 Example Bounds 

є = ϵ. 

 

Let z be a bad literal. We want to determine the probability that z has not 
been eliminated from h after seeing a given number of examples. 

P (z survives one example) = 1 − P (z eliminated by one example) 

≤ 1 − p(z) 

< 1 − 
n

 

(1) 

We can intuit that as we see more examples, the probability that bad literal z 
survives decreases exponentially, given by 

p(z survives m independent examples) = (1 − p(z))m < (1 − 
ϵ 

)m 

This is for one literal z. There are at most n bad literals, thus the probability 

that some bad literal survives m examples is bounded by n(1 − є )m 

We want this probability to be bounded by δ, and thus we must choose m to 
be sufficiently large. Consider that we want 

n(1 
ϵ 

)m < δ 
n 

Using 1 − x < e−x, it is sufficient to require 
−mе 

ne  n    < δ 
 

Therefore, we need 
n 1 

m > 
ϵ 
{ln(n) + ln( 

δ 
)} 

Σ 
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to guarantee the probability of failure (Error > ϵ) is less than δ 

With probability > 1 − δ, there are no bad literals, i.e., Error(h) < ϵ 

 
3 Formulating Prediction Theory 

 
Given 

• Instance space X 

• Output space Y = {−1, +1} 

• Distribution D, which is unknown over X × Y 

• Training examples S, where each is drawn independently from D (|S| = m 

we can define the following 

• True Error:  ErrorD = Pr(x,y)∈D[h(x)¬ = y] 

• Empirical Error:  ErrorS  = P r(x,y)∈S [h(x)¬ = y] =  
Σ

[h(xi)¬ = yi] 

• Function space C, or set of possible target concepts, where f ∈ C : X → Y 

• Set of possible hypotheses H 

We cannot expect a learner to learn a concept exactly. There may be many 
concepts consistent with the available data, and unseen examples may have any 
label. Thus we must agree to misclassify uncommon examples that were not 
seen during training. 

Further,  we cannot always expect a learner to learn a close approximation to 
the target concept, since sometimes the training set does not represent unseen 
examples. 

Therefore, the only realistic expectation of a good learner is that it will learn a 
close approximation to the target concept with high probability. 

 

3.1 Probably Approximately Correct Learning 
 

In Probably Approximately Correct (PAC) learning, one requires that given 
small parameters ϵ and δ – with probability at least (1 δ) – a learner produces 
a hypothesis with error at most ϵ. 

This notion relies on the Consistent Distribution Assumption: there is one prob- 
ability distribution D that governs both training and testing examples. 

1,m 
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3.2 PAC Learnability 
 

Consider a concept class C defined over an instance space X, and a learner L 
using a hypothesis space H. 

C is PAC learnable by L using H 
if   f   C,    D over X,  and fixed 0 < ϵ, δ  < 1,  L – given a collection of m 
examples sampled independently according to D – produces with probability at 

least 1 − δ a hypothesis h ∈ H with error at most ϵ where m is polynomial in 
1 ,  1 , n and |H|. 

C is efficiently PAC learnable 
if L can produce the hypothesis in time polynomial in 1 , 1 , n and size(H). 

  

є    δ 

Two Limitations 

Polynomial sample complexity, which is also called information theoretic 
constraint, governs if there is enough information in the sample to distin- 
guish a hypothesis h that approximate f . 

Polynomial time complexity, also called computational complexity, which 
tells if there is an efficient algorithm that can process the sample and 
produce a good hypothesis h. 

To be PAC Learnable, there must be a hypothesis h ∈ H with arbitrary small 
error for every f ∈ C. We generally assume H is a super set of C. 

The worst definition is that the algorithm must meet its accuracy for every 

distribution and every target function f ∈ C. 

 
3.3 Occam’s Razor 

 
We want to prove the general claim that smaller hypothesis spaces are bet- 
ter. 

Claim: The probability that there exists a hypothesis h ∈ H that is consistent 
with m examples and satisfies Error(h) > ϵ is less then |H|(1 − ϵ)m. 

Proof 
Let h be a bad hypothesis. The probability that h is consistent with on examples 
is less than 1−ϵ. Since the m examples are independently drawn, the probability 

that h is consistent with m examples is less than (1 − ϵ)m. 

The probability that any one of the hypothesis in H is consistent with m exam- 

ples is less than |H|(1 − ϵ)m. 

Given this fact, we now want this probability to be smaller than δ, that is 

 

|H|(1 − ϵ)m < δ 

• 

• 
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ln(|H|) + m ln(1 − ϵ) < ln(δ) 

With the fact that e−x > 1 − x, we have 

1 1 
m >  

ϵ 
{ln(|H |) + ln( 

δ 
)} 

This is called Occam’s razor, because it indicates a preference towards small 
hypothesis space, i.e., if you have small hypothesis space,  you do not have to 
see too many examples. 

There is also a trade-off of the hypothesis space. If the space is small, then it 
generalizes well, but it many not be expressive enough. 

 
 

4 Consistent Learners 
 

Using the results from the previous section, we can get this general scheme for 
PAC learning: 

Given a sample of m examples, find some h H that is consistent with all m 
examples. If m if large enough, a consistent hypothesis will be sufficiently close 
to f . We can then check that m scales polynomially in the relevant parameters 
(i.e. m is not too large). ”Closeness” guarantees 

1 1 
m > 

ϵ 
(ln |H| + ln 

δ 
) 

In the case of conjunctions, we used the elimination algorithm, which results in 
a hypothesis h that is consistent with the training set, and we showed directly 
that if we have sufficiently many examples (polynomial in relevant parameters), 
then h is close to the target function. 

 

4.1 Examples 
 

Conjunctions 
For conjunctions, the size of the hypothesis space is 3n, since there are 3 possible 
values for each of the n features (appear negative, positive, or not at all. There- 
fore, the number of examples we need according to the PAC learning framework, 
m, is given by 

1 n 1 1 1 
m > { 

Thus, if we want to guarantee a 95% chance of learning a hypothesis (1 − δ) of 
at least 90% accuracy (1 − ϵ), with n = 10 boolean variables, m > 140. 

ln(3 ) + ln( 
δ 

)} = 
ϵ 
{n ln 3 + ln( 

δ 
)} 
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If we change to n = 100, m > 1130, which shows m is linear with n. 

However, changing the confidence (1 δ) to 99% makes m > 1145, shows m is 
logarithmic with δ. 

k-CNF 
Consider Conjunctive Normal Form functions (CNFs), which can express any 
boolean function. Recall that CNFs are conjuctions of disjunctions. A subset of 
this class is that of k-CNF, where each disjunction contains k terms, as in 

 
m 
i=1 (li1 ∨ li2 ∨ ... ∨ lik ) 

To determine if we can learn such a class of functions, we must know the size 

of this hypothesis space. In this case, the hypothesis space is given by 2(2n)k 

, 
corresponding to the number of ways to choose subsets from among the k literals, 
including negations. Thus, the sample complexity is given by 

ln(|k − CNF |) = O(nk) 

Since k is fixed, we have an order polynomial in the number of examples and 
thus h is guaranteed to be PAC learnable. Next step is to learn a consistent 
hypothesis. 

Now we must consider how to learn such a hypothesis. Using what we know 
now, we cannot learn this directly. We can learn k-CNFs, however, if we move 
to a new space. 

Consider the example in which n = 4 and k = 2 for a monotone k-CNF. Here, 
there are six disjunctions for which we can create a new mapping from the orig- 

 

y1 = x1 ∨ x2 y2 = x1 ∨ x3 
y3 = x1 ∨ x4 y4 = x2 ∨ x3 
y5 = x2 ∨ x4 y6 = x3 ∨ x4 

inal space to a new space with six features: (0000, 1) (000000, 1) 
(1010, 1) (111101, 1) 
(1110, 1) (111111, 1) 
(1111, 1) (111111, 1) 
Now we can apply a standard algorithm for learning monotone conjunctions. 

Unbiased Learning 
Consider the hypothesis space of all boolean function on n features. There 

are 22n 

different functions and the bound (ln( H ) is therefore exponential in 
2n, which means that in general the set of all boolean functions are not PAC 
learnable. 

k-Clause CNF 
Conjunctions of at most k disjunctive clauses. 

f = C1 ∧ C2 ∧ ...Ck; Ci = l1 ∨ l2... ∨ lm 

f = ∧ 
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The size of the hypothesis space ln( H ) = O(kn) is linear in n and thus PAC 
learnable. 

k-DNF 
Disjunctions of any number of terms where each conjunctive term has at most 
k literals. 

f = T1 ∨ T2... ∨ Tm; Ti = l1 ∧ l2 ∧ ... ∧ lm 

 
4.2 k-term DNF Computational Complexity 

 
Consider the class of k-term DNFs, or disjunctions of at most k conjunctive 
terms. From the sample complexity perspective, we should be able to learn 
in the same way as with k-CNFs,  but  computational  complexity  is  challeng- 
ing. 

Consider a 2-term DNF consistent with a set of training data is NP-hard. Thus, 
even though 2-term DNFs are PAC learnable, they are not efficiently PAC 
learnable. 

We can address this by enlarging the hypothesis space.  If the hypothesis we 
wish to learn can be represented in a larger hypothesis space that we know is 
learnable, we can learn our desired hypothesis. In this case, we can represent k-
term DNFs as k-CNFs, since k-CNF is a superset of k-term DNF. Consider a 3-term 
DNF (left) and its equivalent 3-CNF (right). 

 

T1 ∨ T2 ∨ T3 = 
x∈T1,y∈T2,z∈T3 

{x ∨ y ∨ z} 

Representation is important. Concepts that cannot be leaned using one repre- 
sentation may be learned using another more expressive representation. 

However, this leaves us with two problems: 

How can we learn when data is not completely consistent with training 
data? 

How can we learn in an infinite hypothesis space? 
 

5 Agnostic Learning 
 

Assume  we  are  trying  to  learn  concept  f  using  hypothesis  space  H ,  but  f  ∈/ 
H.  We therefore cannot learn a a completely consistent hypothesis, and thus 
our goal  is to  find a  hypothesis  h H that has as small training error as 
possible. 

Err 
=

 1 Σ 
f (x ) /= h(x ) TR 

i 

moodbanao.net



Computational Learning Theory-9  

2 

   

− 

 
 
 
 

where xi is the ith training example. 

We want to guarantee that a hypothesis with a small training error will have 
good accuracy on unseen examples, and one way to do so is with Hoeffding 
bounds. This characterizes the deviation between the true probability of some 
event and its observed frequency over m independent trails. 

 

P r[p > p̂ + ϵ] < e−2mє 
 

To understand the intuition,  consider tossing a biased coin.  The more tosses, 
the more likely the observed result will correspond with the expected result. 
Similarly, the probability that an element in H  will have training error which is 
off by more than ϵ can be bounded as follows: 

 

Pr[ErrD(h) > ErrT R(h) + ϵ] < e−2mє 
 

If we consider δ = |H|e−2mє , we can get a generalization bound, or how much 
will the true error ED deviate from the observed (training) error ET R. 

For any distribution D, generating training and test instances with probability 

at least 1 − δ over the choice of the training set of size m, (drawn i.i.d.), for all 
h ∈ H 

s

log |H| + log( 1 ) 
 

 
 ErrorD(h) < ErrorT R(h) + δ 

2m 
 

An agnostic learner which makes no commitment to whether f is in H returns 
the hypothesis with least training error over at least the following number of 
examples m can guarantee with probability at least 1  δ that its training error 
is not off by more than ϵ from the true error. We therefore require a number of 
examples given by 

1 1 
m >  

2ϵ2 
{ln(|H |) + ln( 

δ 
)} 

Learnability depends on the log of the size of the hypothesis space. 
 
 

6 VC Dimension 
 

For both consistent and agnostic learners, we assumed finite hypothesis spaces. 
We know consider an infinite hypothesis space. 

 

6.1 Learning Rectangles 
 

Consider a target concept as an axis parallel rectangle (positive points inside, 
negative outside, as given by Figure 2. 

2 

2 

moodbanao.net



Computational Learning Theory-10  

| | 

 
 
 

 

 
 

Figure 2: Learning Rectangles 
 
 

We can simply choose the maximum x and y values as well as the minimum x 
and y values of the positive examples as the boundary for the rectangle. This is 
generally a good algorithm because it learns efficiently, but we cannot use the 
theorem from before to derive a bound because the hypothesis space is infinitely 
large. 

Therefore, we need to find out how to derive a bound given an infinitely large 
hypothesis space. 

 

6.2 Infinite Hypothesis Space 
 

Just as before, where we discussed small hypothesis spaces (conjunctions) and 
large hypothesis spaces (DNFs), some infinite hypothesis spaces are larger (more 
expressive) than others; rectangles and general convex polygons have different 
levels of expressiveness. 

We therefore need to measure the expressiveness of an infinite hypothesis space. 
The Vapnik-Chervonenkis dimension – or VC dimension – provides such a 
measure. Analogous to H , there are bounds for sample complexity using 
V C(H). 

 

6.3 Shattering 
 

The key notion behind VC-dimension is that of shattering. Assume a set of 
points. We want to use a function to separate all possible labelings of the set 
of points. In Figure 3, a linear function (green) can separate the two points, 
regardless of how they’re labeled. 

For two points on a plane, there are two different ways of labeling the two points. 
A line can separate those two points no matter how they are labeled. 
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Figure 3: A linear function can shatter 2 points 
 

 

Figure 4: A set of multiple points 
 

However, if there are many points in the set on a plane, as in Figure 4, no 
straight line can separate any labeling of these points. Linear functions are not 
expressive enough to shatter 13 points, but more expressive functions are. 

We say that a set S of examples is shattered by a set of functions H if – for 
every partition of the examples in S into positive and negative examples – there 
is a function in H that gives exactly there labels to the examples. The intuition 
is that a rich set of functions shatters a large set of points. 

 

(a) A function example (b) function fails to shatter 

 
Consider the function in which left bounded intervals on the real axis for some 
number is positive ([0, a), for some a > 0). 

It is trivial for this function to shatter a single point. However, in any set of two 
points on the line, the left can be labeled negative and the right positive, which 
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this H cannot label correctly. Thus, left bounded intervals cannot shatter two 
points. 

Similarly, if we consider the class of functions for which real numbers b > a and 
points within [a, b] is positive, all sets of one or two points are shatterable, but 
no set of three points can be shattered. 

 

Figure 6: Half space 

 
As a final example, consider half-spaces on the plane. We can trivially shatter 
all sets of one point and two points. We can shatter some sets of three points, 
but cannot shatter any set of four points. If the 4 points form a convex polygon, 
then by labeling each point different from its neighbors, the four points cannot 
be shattered.  If, on the other hand, they do not form a convex polygon, then 
one point is inside the convex hull defined by the other three, and if that point 
is negative, there is no way to shatter them. 

 

6.4 Definition 
 

An unbiased hypothesis space H shatters the entire instance space X if it is able 
to induce every possible partition on the set of all possible instances. 

The larger the subset X that can be shattered, the more expressive a hypothesis 
space is (i.e. less biased). The VC dimension of hypothesis space H over instance 
space X is the size of the largest finite subset X (even if there is only one subset) 
that is shattered by H. 

If there exists a subset of size d that can be shattered, then V C(H) ≥ d. 

If no subset of size d can be shattered, then V C(H) < d. 

• V C(Half intervals) = 1; No subset of size 2 can be shattered 

• V C(Intervals) = 2; No subset of size 3 can be shattered 

• V C(Half-spaces in the plane) = 3; No subset of size 4 can be shattered 

moodbanao.net



Computational Learning Theory-13  

∈ 

 
 
 
 

6.5 Sample complexity and VC dimension 
 

VC dimension serves the same role as the size of the hypothesis space. Using 
VC dimension as a measure of expressiveness, we can give an Occam algorithm 
for infinite hypothesis spaces. 

Given a sample D of m examples we will find h   H that is consistent with all 
m examples, if 

1 13 2 
m > 

ϵ 
{8V C(H) log 

ϵ  
+ 4 log( 

δ 
)} 

then with probability at least 1 − δ, h has error less then ϵ. 

We consider that the hypothesis space has to be infinite if we want to use this 
bound. If we want to shatter m points, then H has to be at least 2m in order 
to shatter any configurations of those m examples. 

Thus |H| > 2m , log(|H|) ≥ V C(H). 

 
6.6 Axis-Parallel Rectangles, Continued 

 
Consider again the problem  of  learning  axis-parallel rectangles.  To determine 
if axis-parallel rectangles are PAC-learnable, we must determine sample com- 

plexity. Here, we show that V C(H) ≥ 4. In Figure 7a, it is trivial to find an 
 

(a) A set that can be shattered (b) a set that cannot be shattered 

 
axis-parallel rectangle to shatter the points, regardless of their labeling. Though 
Figure 7b illustrates a set of four that is not shatterable, it is sufficient  to find 
any set of four to prove the VC dimension is greater or equal to 4. 

Next we need to argue that no set of five points can be shattered. For any layout 
of five points, we just need to show one kind of labeling that cannot be shattered. 
In this case, we can say that – of the five points – there must be a minimum and 
maximum x and y. There must by definition be a point within those minimum 
and maximum bounds, and thus by labeling the extreme four points as positive 
but the fifth, internal point as negative, axis-parallel rectangles cannot shatter 
five points. 
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Thus, from sample complexity perspective, axis-parallel rectangles are PAC 
learnable. 

To determine if this hypothesis class is efficiently PAC learnable, we need an 
efficient algorithm to find the rectangle. Here, we can find the smallest example 
rectangle that contains all positive examples. This is likely not the best rectangle 
– it cannot generalize to new positive examples – so in the ideal case we would 
like a margin, that is, a rectangle slightly larger than the minimum one we’ve 
seen during training. 

Given such an algorithm, we have shown that axis-parallel rectangles are effi- 
ciently PAC learnable. 

 

6.7 Sample Complexity Lower Bound 
 

We’ve discussed upper bounds on the number of examples; that is, if we have 
seen m examples, we can be reasonably sure our algorithm will perform well on 
new examples. There is also a general lower bound on the minimum number of 
examples necessary for PAC learning. 

Consider any concept class C  such that V C(C) > 2.  For any learner L and 
small enough ϵ, δ, there exists a distribution D and a target function in C such 
that if L observes less than 

1 
m = max[ 

ϵ 

1 
log(  ), 

δ 

V C(C) − 1 
]
 

32ϵ 

examples, then with probability at least δ, L outputs a hypothesis having 
error(h) > ϵ. 

This is the inverse of the bound algorithm we have seen before. 

Ignoring constant factors, the lower bound is the same as the upper bound, 
except for the extra log( 1 ) factor in the upper bound. 

 

7 Conclusion 
 

The PAC framework provides a reasonable model for theoretically analyzing the 
effectiveness of learning algorithms. 

We discussed that the sample complexity for any consistent learner using the 
hypothesis space, H, can be determined from a measure of Hs expressiveness 

(|H|, V C(H)). 

We discussed consistent and agnostic learners, showing that the log of the size 
of a finite hypothesis space is most important, and then extended this notion 
to the infinite hypothesis space. 
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We also discussed sample and computational complexity, showing that if sample 
complexity is tractable, the computational complexity of finding a consistent 
hypothesis governs the complexity of the learning problem. 

Many additional models have been studied as extensions of the basic one: learn- 
ing with noisy data, learning under specific distributions, learning probabilistic 
representations, etc.. 

An important extension is PAC-Bayesians theory, where the idea is that – rather 
than simply assume that training and test are governed by the same distribution 
– assumptions are also made about the prior distribution over the hypothesis 
space. 

It’s important to note that though the bounds we compute are loose, they 
can still guide model selection. A lot of recent work is on data dependent 
bounds. 

The impact COLT has had on practical learning system in the last few years has 
been very significant: SVMs, Winnow (Sparsity), Boosting, and Regularization, 
to name a few. 
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