

 MICROPROCESSOR AND MICROCONTROLLER

UNIT – IV

ARM Architecture

ARM Processor fundamentals:

 The first ARM processor was developed on 3-micron technology in 1983-1985. For

simplicity, we will be using the ARM6/7 architecture first developed between 1990-1995.

Features of ARM Processor:

 The ARM is a 32-bit architecture.

 When used in relation to the ARM:

 Byte means 8 bits

 Half word means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Most ARM’s implement two instruction sets 32-bit ARM Instruction Set 16-bit

Thumb Instruction Set

 Jazelle cores can also execute Java byte code.

 ARM has 37 registers all of which are 32-bits long.

 1 dedicated program counter

 1 dedicated current program status register

 5 dedicated saved program status registers

 30 general purpose registers

 The current processor mode governs which of several banks is accessible. Each mode

can access

 a particular set of r0-r12 registers

 a particular r13 (the stack pointer, sp) and r14 (the link register, lr)

 the program counter, r15 (pc)

 the current program status register, cpsr

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 Privileged modes (except System) can also access a particular spsr (saved program

status register)

The ARM is load/store architecture in that only load and store instructions can

access memory. All other instructions are register-to-register accesses. This speeds up

overall operation as register accesses are much faster than memory accesses.

All ARM instructions are 32 bits wide and are subtle variations on the same regular

formatting pattern. This makes decoding the instructions easier, simplifying some of the

necessary circuitry and again speeding up the fetch-decode-execute cycle.

All input/output peripherals (such as printers, hard drive disks, and the network) are

memory-mapped devices. There is also hardware support for high-bandwidth data

transfer.

Most ARM processors are 32-bit architectures throughout. (Those that aren't are 64-

bit architectures instead!) Thus they can address a maximum of 232 bytes (or 4

Gigabytes of memory). The word size is 32 bits, with half-words being 16 bits wide.

Words are aligned on 4-byte boundaries; half words are aligned on even byte boundaries.

Registers:

 ARM processors provide general-purpose and special-purpose registers. Some

additional registers are available in privileged execution modes.

 In all ARM processors, the following registers are available and accessible in any

processor mode:

 13 general-purpose registers R0-R12.

 One Stack Pointer (SP).

 One Link Register (LR).

 One Program Counter (PC).

 One Application Program Status Register (APSR).

With the exception of ARMv6-M and ARMv7-M based processors, there are 30 (or 32

if Security Extensions are implemented) general-purpose 32-bit registers, that include the

banked SP and LR registers. Fifteen general-purpose registers are visible at any one time,

depending on the current processor mode. These are R0-R12, SP, LR. The PC (R15) is not

considered a general-purpose register.

The ARM Register Set:

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

Application Program Status Register:

The Application Program Status Register (APSR) holds the program status flags that are

accessible in any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to

determine whether or not to execute conditional instructions.

Saved Program Status Register:

A Saved Program Status Register (SPSR) stores the current value of the CPSR when an

exception is taken so that the CPSR can be restored after handling the exception.

Each exception handling mode can access its own SPSR. User mode and System mode do

not have an SPSR because they are not exception handling modes.

Current Program Status Register:

The Current Program Status Register is a 32-bit wide register used in the ARM

architecture to record various pieces of information regarding the state of the program being

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

executed by the processor and the state of the processor. This information is recorded by

setting or clearing specific bits in the register. The Current Program Status Register (CPSR)

holds the same program status flags as the APSR, and some additional information.

The CPSR holds:

 The APSR flags.

 The processor mode.

 The interrupt disable flags.

 The instruction set state (ARM, Thumb, ThumbEE, or Jazelle®).

 The endianness state (on ARMv4T and later).

 The execution state bits for the IT block (on ARMv6T2 and later).

The format of CPSR register is shown below.

The top four bits (bits 31, 30, 29, and 28) are the condition code (cc) bits and are of

most interest to us. Condition code bits are sometimes referred to as "flags". The lowest 8

bits (bit 7 through to bit 0) store information about the processor's own state. The

remaining bits (i.e. bit 27 to bit 8) are currently unused in most ARM processors.

 The N bit is the "negative flag" and indicates that a value is negative.

The Z bit is the "zero flag" and is set when an appropriate instruction produces a

zero result.

 The C bit is the "carry flag" but it can also be used to indicate "borrows" (from

subtraction operations) and "extends" (from shift instructions (LINK)).

 The V bit is the "overflow flag" which is set if an instruction produces a result that

overflows and hence may go beyond the range of numbers that can be represented in

2's complement signed format.

For completeness, the other state bits are:

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

N Z C V

C V

vvvvvvv

vvv

V V V

I F T

 Mode

 The I and F bits which determine whether interrupts (such as requests for

input/output) are enabled or disabled.

 The T bit which indicates whether the processor is in "Thumb" mode, where the

processor can execute a subset of the assembly language as 16-bit compact

instructions. As Thumb code packs more instructions into the same amount of

memory, it is an effective solution to applications where physical memory is at a

premium.

 The M4 to M0 bits are the mode bits. Application programs normally run in user

mode (where the mode bits are 10000). Whenever an interrupt or similar event

occurs, the processor switches into one of the alternative modes allowing the

software handler greater privileges with regard to memory manipulation.

Copies of the ALU status flags

(latched if the instruction has the "S" bit set).

* Condition Code Flags

N = Negative result from ALU flag. Z = Zero result from ALU flag.
C = ALU operation Carried out V = ALU operation oVerflowed

* Mode Bits

M[4:0] define the processor mode

* Interrupt Disable bits. I = 1, disables the IRQ. F = 1,
disables the FIQ.

* T Bit (Architecture v4T only)

T = 0, Processor in ARM state

T = 1, Processor in Thumb state

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

Program Counter (r15):

 When the processor is executing in ARM state:

 All instructions are 32 bits wide

 All instructions must be word aligned

 Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as

instruction cannot be half word or byte aligned).

 When the processor is executing in Thumb state:

 All instructions are 16 bits wide

 All instructions must be half word aligned

 Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as

instruction cannot be byte aligned).

 When the processor is executing in Jazelle state:

 All instructions are 8 bits wide

 Processor performs a word access to read 4 instructions at once

 PC Instruction fetched from memory

 PC – 4 Decoding of registers used in instruction

 PC – 8 Register(s) read from
 Register Bank Shift and ALU operation

 Write register(s) back to Register Bank

Pipeline:

A pipeline is the mechanism a RISC processor uses to execute instructions. Using a

pipeline speeds up execution by fetching the next instruction while other instructions

are being decoded and executed. One way to view the pipeline is to think of it as an

automobile assembly line, with each stage carrying out a particular task to manufacture

FETCH

DECODE

EXECUTE

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

the vehicle.

 Fetch Decode Execute

ARM is having three-stage pipeline.

 Fetch loads an instruction from memory.

 Decode identifies the instruction to be executed.

 Execute processes the instruction and writes the result back to a register.

 The ARM uses a pipeline in order to increase the speed of the flow of
instructions to the processor.

– Allows several operations to be undertaken simultaneously, rather than
serially.

Processor Modes:

The ARM has seven basic operating modes:

 User : unprivileged mode under which most tasks run

 FIQ : entered when a high priority (fast) interrupt is raised

 IRQ : entered when a low priority (normal) interrupt is raised

 Supervisor : entered on reset and when a Software Interrupt

 instruction is executed Abort : used to handle memory access violations

 Undef : used to handle undefined instructions

 System: privileged mode using the same registers as user mode.

Exceptions, Interrupts, and the Vector Table:

 When an exception or interrupt occurs, the processor sets the pc to a specific

memory address. The address is within a special address range called the vector table.

 The entries in the vector table are instructions that branch to specific routines

designed to handle a particular exception or interrupt.

The memory map address 0x00000000 is reserved for the vector table, a set of 32-bit

words. On some processors the vector table can be optionally located at a higher address

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

in memory (starting at the offset 0xffff0000). Operating systems such as Linux and

Microsoft’s embedded products can take advantage of this feature.

 When an exception or interrupt occurs, the processor suspends normal execution

and starts loading instructions from the exception vector table (see Table 2.6). Each

vector table entry contains a form of branch instruction pointing to the start of a specific

routine:

 Reset vector is the location of the first instruction executed by the processor

when power is applied. This instruction branches to the initialization code.

 Undefined instruction vector is used when the processor cannot decode an

instruction. Software interrupt vector is called when you execute a SWI instruction. The

SWI instruction is frequently used as the mechanism to invoke an operating system

routine.

 Prefetch abort vector occurs when the processor attempts to fetch an

instruction from an address without the correct access permissions. The actual abort

occurs in the decode stage.

 Data abort vector is similar to a prefetch abort but is raised when an instruction

attempts to access data memory without the correct access permissions.

 Interrupt request vector is used by external hardware to interrupt the normal

execution flow of the processor. It can only be raised if IRQs are not masked in the

CPSR, which is explained below.

When an exception occurs, the core:

– Copies CPSR into SPSR_<mode>

– Sets appropriate CPSR bits

 If core
implements
ARM
Architecture
4T and is
currently in
Thumb state,
then

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 ARM state is entered.

 Mode field bits

 Interrupt disable flags if appropriate.

– Maps in appropriate banked registers

– Stores the “return address” in LR_<mode>

– Sets PC to vector address

 To return, exception handler needs to:

– Restore CPSR from SPSR_<mode>

– Restore PC from LR_<mode>

ARM Instruction Set:

Main features of the ARM Instruction Set are

 All instructions are 32 bits long.

 Most instructions execute in a single cycle.

 Most instructions can be conditionally executed.

 A load/store architecture

– Data processing instructions act only on registers

– Three operand format

– Combined ALU and shifter for high speed bit manipulation

– Specific memory access instructions with powerful auto‐ indexing addressing
modes.

 32 bit and 8 bit data types

 and also 16 bit data types on ARM Architecture v4.

– Flexible multiple register load and store instructions

 Instruction set extension via coprocessors

 Very dense 16‐bit compressed instruction set (Thumb)

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

Data processing Instructions:

 Largest family of ARM instructions, all sharing the same instruction format.

 Contains:

– Arithmetic operations

– Comparisons (no results ‐ just set condition codes)

– Logical operations

– Data movement between registers

 Remember, this is a load / store architecture

– These instructions only work on registers, NOT memory.

 They each perform a specific operation on one or two operands.

– First operand always a register ‐ Rn

– Second operand sent to the ALU via barrel shifter.

Arithmetic Operations:

Operations are:

– ADD operand1 + operand2 ; Add

– ADC operand1 + operand2 + carry ; Add with carry

– SUB operand1 - operand2 ; Subtract

– SBC operand1 - operand2 + carry -1 ; Subtract with carry

– RSB operand2 - operand1 ; Reverse subtract

– RSC operand2 - operand1 + carry – 1; Reverse subtract with carry

 Syntax:

– <Operation>{<cond>}{S} Rd, Rn, Operand2

 Examples

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

– ADD r0, r1, r2

– SUBGT r3, r3, #1

– RSBLES r4, r5, #5

Comparison instructions:

 The only effect of the comparisons is to update the condition flags. Thus no need to set S
bit.

 Operations are:

– CMP operand1 - operand2 ; Compare

– CMN operand1 + operand2 ; Compare negative

– TST operand1 AND operand2 ; Test

– TEQ operand1 EOR operand2 ; Test equivalence

 Syntax:

– <Operation>{<cond>} Rn, Operand2

 Examples:

– CMP r0, r1

– TSTEQ r2, #5

Logical Operations:

Operations are:

AND operand1 AND operand2

EOR operand1 EOR operand2

ORR operand1 OR operand2

ORN operand1 NOR operand2

BIC operand1 AND NOT operand2 [ie bit clear]

Syntax:

– <Operation>{<cond>}{S} Rd, Rn, Operand2

Examples:

AND r0, r1, r2

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

BICEQ r2, r3, #7

EORS r1,r3,r0

 Data Movement:

 Operations are:

 MOV operand2

 MVN NOT operand2

 Note that these make no use of operand1.

 Syntax:

 <Operation>{<cond>}{S} Rd, Operand2

 Examples:

 MOV r0, r1

 MOVS r2, #10

 MVNEQ r1,#0

Barrel Shifter:

 Data processing instructions are processed within the arithmetic logic unit (ALU).

Unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary

pattern in one of the source registers left or right by a specific number of positions before it

enters the ALU. This shift increases the power and flexibility of many data processing

operations.

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 Fig. Barrel shifter operations.

 Multiplication Instructions:

 The Basic ARM provides two multiplication instructions.

 Multiply

– MUL{<cond>}{S} Rd, Rm, Rs ; Rd = Rm * Rs

 Multiply Accumulate ; does addition for free

– MLA{<cond>}{S} Rd, Rm, Rs,Rn ; Rd = (Rm * Rs) +

Rn

 Restrictions on use:

– Rd and Rm cannot be the same register

• Can be avoided by swapping Rm and Rs around. This works because
multiplication is commutative.

– Cannot use PC.

 These will be picked up by the assembler if overlooked.

 Operands can be considered signed or unsigned

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

– Up to user to interpret correctly.

Branch Instructions:

 A branch instruction changes the flow of execution or is used to call a

routine. This type of instruction allows programs to have subroutines, if-then-else

structures, and loops.

 The change of execution flow forces the program counter pc to point to

a new address. The ARMv5E instruction set includes four different branch

instructions.

Syntax: B{<cond>} label

BL{<cond>}

label

BX{<cond>} Rm

BLX{<cond>}

label | Rm

B branch pc = label

BL branch with link pc = label

lr = address of the next instruction after the BL

BX branch exchange pc = Rm & 0xfffffffe, T = Rm & 1

BL X Branch exchange with link pc = label, T = 1

pc = Rm & 0xfffffffe, T = Rm & 1

lr = address of the next instruction after the BLX

 The address label is stored in the instruction as a signed pc-relative offset and

must be within approximately 32 MB of the branch instruction. T refers to the Thumb bit

in the CPSR. When instructions set T, the ARM switches to Thumb state.

Conditional Branches:

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 Load-Store Instructions:

 Load-store instructions transfer data between memory and processor registers.

There are three types of load-store instructions: single-register transfer, multiple-register

transfer, and swap.

Single-Register Transfer:

 These instructions are used for moving a single data item in and out of a

register. The data types supported are signed and unsigned words (32-bit), halfwords (16-

bit), and bytes. Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR>{<cond>}{B} Rd,addressing
1

LDR{<cond>}SB|H|SH Rd, addressing

STR{<cond>}H Rd, addressing

Multiple-Register Load-Store Instructions:

 The Thumb versions of the load-store multiple instructions are reduced forms of

the ARM load- store multiple instructions. They only support the increment after (IA)

addressing mode.

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

Syntax : <LDM|STM>IA Rn!, {low Register list}

Stack Instructions:

 The Thumb stack operations are different from the equivalent ARM

instructions because they use the more traditional POP and PUSH concept.

Syntax: POP {low_register_list{, pc}}

PUSH {low_register_list{, lr}}

Software Interrupt Instruction:

 Similar to the ARM equivalent, the Thumb software interrupt (SWI) instruction

causes a software interrupt exception. If any interrupt or exception flag is raised in

Thumb state, the processor automatically reverts back to ARM state to handle the

exception.

Syntax: SWI immediate

Swap Instruction:

 The swap instruction is a special case of a load-store instruction. It swaps the

contents of memory with the contents of a register. This instruction is an atomic

operation—it reads and writes a location in the same bus operation, preventing any other

instruction from reading or writing to that location until it completes.

Syntax

:

SWP{B}{<cond>} Rd,Rm,[Rn]

 When the processor executes an SWI instruction, it sets the program counter pc

to the offset 0x8 in the vector table. The instruction also forces the processor mode to

SVC, which allows an operating system routine to be called in a privileged mode.Each

SWI instruction has an associated SWI number, which is used to represent a particular

function call or feature.

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 Program Status Register Instructions:

 The ARM instruction set provides two instructions to directly control a

program status register (psr). The MRS instruction transfers the contents of either the

cpsr or spsr into register; in the reverse direction, the MSR instruction transfers the

contents of a register into the cpsr or spsr. Together these instructions are used to read

and write the cpsr and spsr.

 In the syntax you can see a label called fields. This can be any

combination of control (c), extension (x), status (s), and flags (f). These fields

relate to particular byte regions in

Syntax: MRS{<cond>} Rd,<cpsr|spsr>

MSR{<cond>} <cpsr|spsr>_<fields>,Rm

MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

 Loading Constants:

 You might have noticed that there is no ARM instruction to move a 32-bit

constant into register. Since ARM instructions are 32 bits in size, they obviously cannot

specify a general 32- bit constant.

 To aid programming there are two pseudoinstructions to move a 32 -

bit value into Register.

Syntax: LDR Rd, =constant

ADR Rd, label

Conditional Execution:

 Most ARM instructions are conditionally executed—you can specify that the

instruction only executes if the condition code flags pass a given condition or test. By

using conditional execution instructions you can increase performance and code density.

 The condition field is a two-letter mnemonic appended to the instruction mnemonic.

The default mnemonic is AL, or always execute.

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

 Conditional execution reduces the number of branches, which also reduces the

number of pipeline flushes and thus improves the performance of the executed code.

Conditional execution depends upon two components: the condition field and condition

flags. The condition field is located in the instruction, and the condition flags are located

in the cpsr.

Introduction to the Thumb Instruction Set:

 Thumb encodes a subset of the 32-bit ARM instructions into a 16-bit instruction

set space. Since Thumb has higher performance than ARM on a processor with a 16-bit

data bus, but lower performance than ARM on a 32-bit data bus, use Thumb for memory-

constrained systems.

 Thumb has higher code density—the space taken up in memory by an

executable program—than ARM. For memory-constrained embedded systems, for

example, mobile phones and PDAs, code density is very important. Cost pressures also

limit memory size, width, and speed.

 Thumb is a 16-bit instruction set

– Optimized for code density from C code

– Improved performance form narrow memory

– Subset of the functionality of the ARM instruction set

 Core has two execution states – ARM and Thumb

– Switch between them using BX instruction

 Thumb has characteristic features:

– Most Thumb instruction are executed unconditionally

– Many Thumb data process instruction use a 2-address format

– Thumb instruction formats are less regular than ARM instruction formats, as a

result of the dense encoding.

moodbanao.net

 MICROPROCESSOR AND MICROCONTROLLER

Thumb Instruction Set: The following table summarizes the THUMB instruction set.

moodbanao.net

