mood-book

Time: 3 Hours

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, April/May - 2023 ANALOG AND DIGITAL ELECTRONICS

(Common to CSE, IT, ECM, ITE, CE(SE), CSE(CS), CSE(N))

Max. Marks: 75

R18

Note: i) Question paper consists of Part A, Part B.

ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.

iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

(25 Marks)

1.a)	Give the applications of PN junction diode.	[2]
b)	Discuss about diode switching times.	[3]
c)	Discuss about gain bandwidth product in amplifier using BJT.	[2]
d)	What is thermal runway?	[3]
e)	Define de morgan laws.	[2]
f)	Define the pinch-off voltage. Why the name field effect is used for the device FET?	
		[3]
g)	Differentiate between encoder and decoder.	[2]
h)	How Decimal Adder different from Binary adder?	[3]
i)	What is excitation table? Write the excitation tables for the SR flip flop.	[2]
j)	What is state assignment? Explain with a suitable example.	[3]
-		
	PART – B	
		(50 Marks)
2.a)	Define and derive the equation for diffusion capacitance.	
b)	Explain positive and negative diode clipper circuits.	[4+6]
	OR	
3.a)	Briefly discuss about PN junction diode and light emitting diode.	
b)	Discuss about half wave rectifier with and without capacitive filter.	[5+5]
4.a)	Explain the input and output characteristics of a transistor in CE configur	ation.
b)	Draw a Self-bias circuit and explain its operation. Derive the equatio	n for Stability
	factor.	[5+5]
	OR	
5.a)	Explain various methods used for coupling of multistage amplifie	ers with their
	frequency response.	
b)	Draw and explain equivalent circuit of transistor at low frequencies.	[6+4]
- \		
6.a)	Draw the circuit diagram of common drain amplifier and derive expression for voltage	
	Gain using FET.	
b)	Simplify the following function and realize using universal gates	

F(A,B,C) = A'BC' + ABC + B'C' + A'B'[5+5]

OR

- Explain the construction and principle of operation of Enhancement mode N-channel 7.a) MOSFET.
 - Explain the operation of TTL with neat diagram. b) [5+5]
 - 8.a) Minimise the following Boolean function using K-map and design a logic circuit using NAND gates.

$$F=\Sigma m (0,3,4,7,8,10,12,14)+d(2,6)$$

- b) Construct a 3*8 decoder using logic gates and its truth table. [5+5] OR
- 9.a) Express the function (xy+z)(y+xz) in canonical SOP and POS forms.
 - b) Implement the following Boolean function with a multiplexer. F(A,B,C,D)

$$= \sum (1, 3, 4, 11, 12, 13, 14, 15)$$
[5+5]

- Draw and explain the logic diagram of 4-bit ring counter with the help of timing 10.a) diagrams.
 - Realize D-FF and T-FF using JK-FF b) [5+5] OR
- 11.a) Explain about the universal shift registers.
 - b) Discuss in detail about various types of ROM.

Time: 3 Hours

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.** Tech II Year I Semester Examinations, August/September - 2022 ANALOG AND DIGITAL ELECTRONICS

(Common to CSE, IT, ECM, ITE, CSE(SE), CSE(CS), CSE(N))

Max.Marks:75

[8+7]

[10+5]

[8+7]

R18

Answer any five questions All questions carry equal marks

- Discuss the different types of junction breakdowns that can occur in a reverse biased 1.a) diode.
- Explain operation of diode in forward bias and reverse bias condition. Draw V-I b) characteristics of diode. [8+7]
- Explain about the full-wave center-tap rectifier with L section filters and also draw 2.a) suitable diagram and waveforms.
- Write a short note on diffusion capacitance and diode switching times. b) [8+7]
- With neat diagrams and necessary equations, explain the effect of coupling capacitor 3.a) and bypass capacitor on the performance of an amplifier at low-frequencies?
 - Explain how self-biasing can be done in a BJT with relevant sketches and waveforms? b)
- Write equations of voltage gain, current gain, Input impedance and Output impedance 4.a) of CE amplifier.
- b) Explain how transistor acts as an amplifier?
- Bring out the differences between BJT and FET. Compare the three configurations of 5.a) JFET amplifiers.
 - With the help of a neat schematic, explain the functioning of a common drain amplifier. b)
- Define the De Morgan Laws with suitable example. 6.a)
 - Implement the basic logic gates by using modified DTL gates, HTL and TTL gates b) [6+9
- Explain the function of a Encoder with necessary diagrams and discuss its applications. 7.a) [6+9]
- b) Design the 4-bit binary Adder-Subtractor with suitable diagram.
- 8.a) Give the design of 3 bit Ring counter and explain its operation with waveforms. Also give the applications of ring counter.
 - Obtain the characteristic equations of D and T flip flops. b) [9+6]

R18 Code No: 153AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech II Year I Semester Examinations, March - 2021** ANALOG AND DIGITAL ELECTRONICS (Common to CSE, IT, ITE) Time: 3 hours

Max. Marks: 75

[8+7]

[7+8]

Answer any five questions All questions carry equal marks

- Derive the expression for ripple for the circuit FWR with inductor filter. 1.a)
- Explain the working of semiconductor photo diode. b)
- Explain V-I characteristics of a tunnel diode and write its applications. 2.a)
- Define clipping and clamping circuits. Differentiate clipping and clamping circuits. [7+8] b)
- 3.a) Draw the circuit diagram of an NPN junction transistor in CE configuration and describe its characteristics.
 - For the transistor amplifier circuit, when signal changes by 0.012 V, the base b) current changes by 9 µA and collector current by 1.3 mA. If the collector load $R_{C} = 6 \text{ K}\Omega$, $R_{L} = 12 \text{ K}\Omega$. Determine input resistance, current gain and voltage gain. [9+6]
- 4.a) What is the necessity of biasing circuits? Derive the expression for stability factor of selfbias circuit.
 - Derive the expressions for Zi, Zo and Av for common drain J-FET amplifier. b) [8+7]
- Draw a totem-pole output buffer with a TTL gate. Explain its operation. 5.a)
- Draw the circuit of an improved version of D.T.L. 3-input NAND gate, and explain its b) operations with the help of Truth Table. If h_{FE} of each transistor is 40, find FAN-OUT of the circuit. [8+7]
- Simplify the following function using K-map. 6.a) $F(A,B,C,D) = \Sigma(1,3,4,5,6,11,13,14,15)$

Draw the logic circuit of a 3 to 8 decoder and explain its working. b)

- 7.a) Design a 4-bit comparator circuit using logic gates.
- Design a modulo 10 counter using JK flipflops and explain its timing diagram. b)
- Using D-Flip flops and waveforms, explain the working of a 4-bit SISO shift register. 8.a)
 - Difference between static and dynamic RAM. Draw the circuits of one cell of each and b) explain its working. [7+8]

Time: 3 Hours

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, March - 2022

ANALOG AND DIGITAL ELECTRONICS

(Common to CSE, IT, ECM, ITE, CSE(SE), CSE(CS), CSE(N))

Max. Marks: 75

[7+8]

Answer any five questions **Each Carries Equal Marks** - - -

- Explain the operation of PN junction under forward bias condition with its 1.a) characteristics
 - Describe the operation of Half Wave Rectifier with and without filters. b) [7+8]
- Explain about RC coupled amplifier and sketch the frequency response plot of an RC 2.a) coupled amplifier
 - A transistor operating in CB configuration has $I_{\rm C} = 2.98$ mA, $I_{\rm E} = 3.00$ mA and b) $I_{CO} = 0.01$ mA. What current will flow in the collector circuit of this transistor when connected in CE configuration with a base current of $30\mu A$. [10+5]
- What is thermal runaway? What is the condition for thermal stability in CE 3.a) configuration?
 - Derive the expression for stability factor S in self-bias circuit. b) [8+7]
- Explain the operation of JFET and draw the drain and transfer characteristics. 4.a) b) Explain about 2 input TTL NAND Gate. [10+5]
- Convert the decimal number $(128.25)_{10}$ into binary, octal, hexadecimal number system. 5.a) Build basic gates AND, NOT, OR using NAND and NOR gates. b) [6+9]
- Simplify the following Boolean expression into one literal. W'X(Z'+YZ) + X(W+Y'Z). 6.a)
- What is multiplexer? Draw circuit diagram of 8:1 multiplexer. Explain its working b) in brief. [6+9]
- Design a full subtractor circuit by using K-map method and draw the logic diagram. 7.a) [8+7]
- Explain 4-bit ring counter with circuit diagram and waveforms. b)
- Draw the logic diagram of clocked RS flip-flop using NAND gates and explain its 8.a) working.
- With a neat diagram, explain 3-bit parallel in serial out shift register. b)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, October - 2020 ANALOG AND DIGITAL ELECTRONICS (Common to CSE, IT)

Time: 2 hours Max. Marks: 75 Answer any five questions All questions carry equal marks Define Diffusion capacitance? Also derive the expression for C_D ? 1.a) Draw and explain the V-I characteristics of a tunnel diode? b) [8+7] 2.a) What is LED? Explain the construction of LED in brief? Explain the working of a full wave rectifier with necessary waveforms? b) [7+8]Explain the input and output characteristics of common base configuration. 3.a) Explain thermal run away and thermal stability. b) [8+7]Analyse CE-CE amplifier interms of gains and Impedances. 4. [15] Draw and explain the CS amplifier with current source load. 5.a) Explain the small signal MOSFET circuit model. b) [8+7]Explain ECL gate and write the advantages and disadvantages. 6.a) Draw CMOS NOT gate and then explain the same. b) [8+7]7. Simplify the following Boolean function using Quine – McClusky method. $F(A, B, C, D) = \sum m (0, 2, 3, 6, 7, 8, 10, 12, 13)$ [15] What is state assignment? Explain with a suitable example? 8.a) b) Realize D and T flip flops using Jk flip flops. ---00000----

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, September - 2021 ANALOG AND DIGITAL ELECTRONICS (Common to CSE, IT, ITE)

Time: 3 hours

Max. Marks: 75

[9+6]

[8-7]

Answer any five questions All questions carry equal marks

- 1.a) Explain the characteristics and applications of a photodiode.
 - b) How does the reverse saturation current of a diode varies with temperature? Explain. [7+8]

2.a) Draw a circuit diagram of series inductor filter with half wave rectifier. Explain with input and output waveforms.

- b) Explain negative peak clipper with and without reference voltage. [8+7]
- 3.a) Explain self bias. Derive the expression for S? Why it is widely used.
- b) Prove that the transistor acts as an amplifier with suitable circuit diagram. [7+8]
- 4. Derive the expression for A_{VS} , A_{IS} , R_i , R_o of transistor amplifier using CB configuration. [15]
- 5.a) Explain the operation and characteristics of N- channel JFET.
 - b) Discuss any two applications of FET. [8+7]

6.a) Explain about Transistor–Transistor logic. Also mention the types of output configuration.

- b) Prove that AND-OR network is equivalent to NAND-NAND network. [8+7]
- 7.a) Give the simplest logic circuit for following logic equation where d represents don't care conditions.
 - $F(A,B,C,D) = \sum m(7) + d(10, 11, 12, 13, 14, 15).$
 - b) Design a 32:1 multiplexer using 16:1 Mux and 2:1 multiplexer?
- 8.a) Explain 4 bit parallel in serial out shift register.
 - b) Explain about RAM with neat sketches.