

by

M. Naresh Choudary
Associate Professor

Dept. of CSE (AI & ML)

Sreyas Institute of Engg. and Tech.

Hyderabad

 XML(eXtensible Markup Language) is a text
based markup language that is fast becoming
a standard of data interchange
◦ An open standard from W3C
◦ A direct descendant from SGML (Standard Generalized

Markup Language)

 XML describes data in a way that humans can
understand and computers can process
Example: Product Inventory Data

<Product>

<Name>Refrigerator</Name>

<Model Number>R3456d2h</Model Number>

<Manufacturer>General Electric</Manufacturer>

<Price>25000.00</Price>

<Quantity>100</Quantity>

</Product>

2

 XMLs key role is data interchange

 Two business partners want to exchange
customer data
◦ Agree on a set of tags

◦ Exchange data without having to change internal
databases

 Other business partners can join in the
exchange by using the tagset
◦ New tags can be added to extend the functionality

3

 TCP/IP ➔ Universal Networking

 HTML ➔ Universal Rendering

 Java ➔ Universal Code

 XML ➔ Universal Data

 Numerous standard bodies are set up for
standardization of tags in different domains
◦ ebXML (Electronic Business eXtensible Markup Language)

◦ XBRL (eXtensible Business Reporting Language)

◦ MML (Medical Markup Language)

◦ CML (Chemical Markup Language)

4

 Both are markup languages
◦ HTML has fixed set of tags

◦ XML allows user to specify the tags based on requirements

 Usage
◦ HTML tags specify how to display data

◦ XML tags specify semantics of the data

 Tag Interpretation
◦ HTML specifies what each tag and attribute means

◦ XML tags delimit data & leave interpretation to the parsing
application

 Well formedness
◦ HTML very tolerant of rule violations (nesting, matching tags)

◦ XML very strictly follows rules of well formedness

5

6

7

 Prolog
◦ Instructs the parser as to what it it parsing
◦ Contains processing instructions for processor

 Body
◦ Tags - Entities

◦ Attributes - Properties of Entities

◦ Comments - Statements for clarification in the document
Example

<?xml version=“1.0” encoding=“UTF-8”?>  Prolog

<contact>
<name>

<first name>Naresh</first name>
<last name>Choudary</last name>

</name>
<address>  Body

<street>Sreyas Street</street>
<city>Hyderabad</city>
<state>Telangana</state>
<zip>500068</zip>

</address>
</contact>

8

<?xml version=“1.0” encoding=“UTF-8”?>

 Contains declaration that identifies a
document as xml

 Version
◦ Version of XML markup language used in the data

◦ Not optional

 Encoding
◦ Identifies the character set used to encode the data

◦ Default compressed Unicode: UTF-8

 May contain entity definitions and tag
specifications

9

 Uses less-than and greater-than characters (<…>)
as delimiters

 Every opening tag must having an accompanying
closing tag
◦ <First Name>Naresh</First Name>
◦ Empty tags do not require an accompanying closing tag.
◦ Empty tags have a forward slash before the greater-than

sign e.g. <Name/>

 Tags can have attributes which must be enclosed in
double quotes
◦ <name first=“Naresh” last=“Choudary”>

 Elements should be properly nested
◦ The nesting can not be interleaved
◦ Each document must have one single root element

 Elements and attribute names are case sensitive

10

 XML documents have a tree structure containing multiple
levels of nested tags.
◦ Root element is a single XML element which encloses all of the

other XML elements and data in the document

◦ All other elements are children of the root element

<?xml version=“1.0” encoding=“UTF-8”?>

<contact>  Root Element
<name>

<first name>Naresh</first name>
<last name>Choudary</last name>

</name>
<address>

<street>Sreyas Street</street>  Child Elements
<city>Hyderabad</city>
<state>Telangana</state>
<zip>500068</zip>

</address>
</contact>

11

 Attributes are properties associated with an
element

 Each attribute is a name value pair
◦ No element may contain two attributes with same name

◦ Name and value are strings

Example

<?xml version=“1.0” encoding=“UTF-8”?>

<contact>

<name first=“Naresh” last=“Choudary”></name>  Attributes

<address>

<street>Sreyas Street</street>  Nested Elements

<city>Hyderabad</city>

<state>Telangana</state>

<zip>500068</zip>

</address>

</contact>

12

 Data should be stored in Elements

 Information about data (meta-data) should
be stored in attributes

 Rules of thumb to use elements:
◦ Elements should have information which some one

may want to read.

◦ Attributes are appropriate for information about
document that has nothing to do with content of
document

e.g. URLs, units, references, ids belong to attributes

◦ What is your meta-data may be some ones data

13

 XML comments begin with “<!--”and end with “-->”
◦ All data between these delimiters is discarded

◦ <!-- This is a list of names of people -->

 Comments should not come before XML declaration

 Comments can not be placed inside a tag

 Comments may be used to hide and surround tags
<Name>

<first>Naresh</first>

<!-- <last>Choudary</last> -->  last tag is ignored

</Name>

 “--” string may not occur inside a comment except
as part of its opening and closing tag
◦ <!– this is not – a valid comment -->  Illegal

14

 eXtensible Stylesheet Language (XSL), it is
used for expressing style sheets

 An XSL style sheet describes how to display
an XML document of a given type

 XSL consists of 3 parts:
◦ XPath (navigation in documents)

◦ XSLT (transformation of documents)
◦ Converting XML to another form

◦ XSLFO (for formatting the objects)
◦ Layout of XML document

 XSL uses XSLT which uses XPath

15

16

 XPath uses path expressions to select nodes
or node-sets in an XML document

17

Expression Description

nodename Selects all nodes with the name "nodename"

/ Selects from the root node

// Selects nodes in the document from the current
node that match the selection no matter where they
are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

 A transformation in the XSLT language is
expressed in the form of a stylesheet

 The root element that declares the document
to be an XSL style sheet is:
<xsl:stylesheet> or <xsl:transform>

 Declaring an XSL style sheet
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

or

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

NOTE: XML NameSpace is a mechanism to avoid name
conflicts by differentiating elements or attributes,
can have identical names, but different definitions.

18

 Empty XSL/XSLT document
<?xml version=‘1.0’ encoding=‘UTF-8’?>

<xsl:stylesheet

xmlns:xsl=‘http://www.w3.org/1999/XSL/Transform’

version=‘1.0’>

</xsl:stylesheet>

19

NOTE: This will simply copy the text content of
the input document to the output.

 An XSL style sheet consists of one or more set of
rules that are called templates

 A template contains rules to apply when a specified
node is matched

 The <xsl:template> element is used to build
templates.

 An XSL style sheet is an XML document, it always
begins with the XML declaration:

 The content inside the <xsl:template> element
defines some HTML to write to the output

 <xsl:template match=‘/’>,the value of the
match attribute is an XPath expression (i.e.
match="/" defines the whole document)

20

 It is used to extract the value of a selected node

 It can be used to extract the value of an XML
element and add it to the output stream of the
transformation

 The select attribute contains an XPath
expression

 An XPath expression works like navigating a file
system; a forward slash (/) selects subdirectories

Example:

<xsl:value-of select = "firstname"/>

21

 It allows you to do looping in XSLT

 It can be used to select every XML element of
a specified node-set

 The select attribute works like same that of
<value-of> element

Example:

<xsl:for-each select="class/student">

22

 It is used to put a conditional test against the
content of the XML file

 Syntax:

<xsl:if test=“boolean_expression">

some output if the expression is true

</xsl:if>

Example:

<xsl:if test = "marks > 90">

23

 It applies a template rule to the current element
or to the current element's child nodes

 If we add a select attribute, it will process only
the child elements that matches the value of the
attribute

 We can also use the select attribute to specify
in which order the child nodes are to be
processed

 Syntax:

<xsl:appy-templates select=“expression”>

Example:

<xsl:apply-templates select = "class/student" />

24

 Web Service is a software service that allows
applications to communicate with each other
in a standard format

25

 A Web Service exposes an interface that can
be accessed through XML messaging

 A Web service uses XML based protocol
(SOAP) to describe an operation or the data
exchange with another web service

 A group of web services collaborating
accomplish the tasks of an application, then
that architecture is called as Service-Oriented
Architecture (SOA)

26

 Exposing Business Functionality on the
network
◦ A web service is a unit of managed code that

provides some sort of functionality to client
applications or end users

◦ This functionality can be invoked over the HTTP
protocol which means that it can also be invoked
over the internet

 Interoperability amongst applications
◦ All types of applications can talk to each other
◦ So instead of writing specific code which can only

be understood by specific applications, you can
now write generic code that can be understood by
all applications

27

 A Standardized Protocol which everybody
understands
◦ It uses standardized industry protocol for the

communication
◦ All the four layers (Service Transport, XML

Messaging, Service Description, and Service
Discovery layers) uses well-defined protocols in the
web services protocol stack

 Loosely Coupled
◦ Each service exists independently of the other

services that make up the application
◦ Individual pieces of the application to be modified

without impacting unrelated areas

28

 Ease of Integration
◦ Data is isolated between applications by

creating ’silos’
◦ Web Services act as glue between these and enable

easier communications within and across
organizations

 Service Reuse
◦ A specific function within the domain is only ever

coded once and used over and over again by
consuming applications

 Reduction in cost of communication
◦ Using low-cost internet connection, SOAP over

HTTP protocol can reduce cost for implementing
web services

29

 There are mainly two types of web services:
◦ SOAP web services

◦ RESTful web services

30

31

SOAP REST

SOAP is a protocol REST is an architectural style

SOAP stands for Simple Object Access
Protocol

REST stands for REpresentational State
Transfer

SOAP can't use REST because it is a
protocol

REST can use SOAP web services because
it is a concept and can use any protocol
like HTTP, SOAP

SOAP defines standards to be strictly
followed

REST does not define too much standards
like SOAP

SOAP requires more bandwidth and
resource than REST

REST requires less bandwidth and
resource than SOAP

SOAP defines its own security
RESTful web services inherits security
measures from the underlying transport

SOAP permits XML data format only
REST permits different data format such
as Plain text, HTML, XML, JSON etc

 A more sophisticated system:
◦ A registry, acts as a mediator for Web services

◦ A provider, can publish services to the registry

◦ A consumer, can then discover services in the
registry

 The provider presents the interface and
implementation of the service, and the
requester uses the Web service.

32

33

 There are three major web service
components:
◦ SOAP

◦ WSDL

◦ UDDI

34

 It is a transport-independent messaging protocol

 SOAP is built on sending XML data in the form of

SOAP Messages

 A document known as an XML document is

attached to each message

 The best thing about Web services and SOAP is that

everything is sent through HTTP, the standard web

protocol

35

 In an XML document, the root element is the first

element

 The “envelope” is separated into two halves

◦ header

◦ body

 The routing data, or information that directs the

XML document to which client it should be sent to,

is contained in the header

 The real message will be in the body

36

 WSDL is an XML format for describing all the
information needed to invoke and communicate with a
Web Service

 It gives the answers to the questions Who? What?
Where? Why? How?

 A service description has two major components:
◦ Functional Description

Defines details of how the Web Service is invoked, where it’s
invoked. Focuses on the details of the syntax of the message and
how to configure the network protocols to deliver the message.

◦ Nonfunctional Description

Provides other details that are secondary to the message (such as
security policy) but instruct the requestor’s runtime environment
to include additional SOAP headers.

37

 A WSDL Document is a set of definitions
with a single root element

 Services can be defined using the following
XML elements:
◦ Types, think Data Type

◦ Message, think Methods

◦ PortType, think Interfaces

◦ Binding, think Encoding Scheme

◦ Service, many URLs

38

39

40

 types: Provides information about any
complex data types used in the WSDL
document. When simple types are used the
document does not need to have a types
section

 message: An abstract definition of the data
being communicated

 portType: An abstract set of operations
supported by one or more endpoints

 operation: An abstract description of the
action supported by the service

41

 binding: Describes how the operation is
invoked by specifying concrete protocol and
data format specifications for the
operations and messages

 port: Specifies a single endpoint as an
address for the binding, thus defining a
single communication endpoint

 service: Specifies the port address(es) of the
binding. The service is a collection of
network endpoints or ports

42

 The default type system in WSDL is the XML
Schema (XSD)

 A WSDL document can have at most one
types element

 The types element can contain simpleType
or complexType

 At the lowest level elements intuitively
named (again!) element are defined with a
name and a type attribute

43

 A message is a collection of parts;
intuitively a part is a named argument
with its type

 A WSDL document can contain zero or more
message elements

 Each message element can be used as an
input, output or fault message within an
operation

 The type attribute of part can be any
standard data type from the XSD Schema or
a user defined one

44

 The portType element describes the
interface to a Web Service

 A WSDL Document can contain zero or more
portType

 A portType element contains a single name
attribute.

 A portType contains one or more
operation elements, with a name attribute
can contain input, output and fault
elements

45

 The binding element specifies to the
service requester how to format the
message in a protocol-specific manner

 Each portType can have one or more
binding elements associated with it

 For a given portType the binding element
has to specify an messaging and transport
pair. (SOAP/HTTP, SOAP/SMTP, etc)

46

 The port element specifies the network
address of the endpoint hosting the Web
Service

 It associates a single protocol-specific
address to an individual binding element

 Ports are named and must be unique within
the document

47

 The service element is a collection of
related port elements identified by a single
service name

 A WSDL Document is allowed to contain
multiple service elements, but
conventionally contains a single one.

 Each service must be uniquely named

48

 An XML-based lookup service for locating
web services in the Internet

 UDDI provides a platform-independent way
of describing and discovering web services
and web service providers

 The UDDI data structures provide a
framework for the description of basic
service information, and an extensible
mechanism to specify detailed service
access information using any standard
description language

49

 If the industry published an UDDI standard
for flight rate checking and reservation,
airlines could register their services into an
UDDI directory.

 Travel agencies could then search the UDDI
directory to find the airline's reservation
interface.

 When the interface is found, the travel
agency can communicate with the service
immediately because it uses a well-defined
reservation interface. (by WSDL)

50

 The java web service application can be
accessed by other programming languages
such as .Net and PHP etc.,

 Java provides it’s own API to create both
SOAP as well as REST web services:
◦ JAX-WS (Java API for XML Web Services)

◦ JAX-RS (Java API for RESTful Web Services)

 Java web service application perform
communication through WSDL

51

 JAX-WS: for SOAP web services
 The are two ways to write JAX-WS

application code:
◦ RPC style
◦ Document style

 JAX-RS: for RESTful web services
 There are two main implementations of

JAX-RS:
◦ Jersey
◦ RESTeasy

52

53

 There are two ways of building SOAP web
services:
◦ Top-down approach (contract-first)

◦ Bottom-up approach(contract-last)

 In a Top-down approach, a WSDL document
is created, and the necessary Java classes
are generated from the WSDL

 In a Bottom-up approach, the Java classes
are written, and the WSDL is generated from
the Java classes

54

 RPC (Remote Procedure Call) style web
services use method name and parameters
to generate XML document structure

 The generated WSDL is difficult to be
validated against predefined schema

 In RPC style, SOAP message is sent as many
elements

 RPC style message is tightly coupled

 In RPC style, SOAP message keeps the
operation name

55

 In RPC style, parameters are sent as discrete
values

 In WSDL file, it doesn't specify the types
section

 For message part, it defines name and type
attributes

 For soap:body, it defines use and
namespace attributes

56

 Document style web services can be
validated against predefined schema

 In document style, SOAP message is sent as
a single document

 Document style message is loosely coupled

 In Document style, SOAP message has no
operation name

 In Document style, parameters are sent in
XML format

57

 In WSDL file, it specifies types details
having namespace and schemaLocation

 For message part, it defines name and
element attributes

 For soap:body, it defines use attribute
only, no namespace

58

59

RPC Style Document Style

The generated WSDL is difficult to be
validated against predefined schema

Document style web services can be
validated against predefined schema

In RPC style, SOAP message is sent as many
elements

In document style, SOAP message is sent as
a single document

RPC style message is tightly coupled Document style message is loosely coupled

In RPC style, SOAP message keeps the
operation name

In Document style, SOAP message has no
operation name

In RPC style, parameters are sent as discrete
values

In Document style, parameters are sent in
XML format

In WSDL file, it doesn't specify the types
section

In WSDL file, it specifies types details having
namespace and schemaLocation

For message part, it defines name and type
attributes

For message part, it defines name and
element attributes

For soap:body, it defines use and
namespace attributes

For soap:body, it defines use attribute only,
no namespace

 Jersey is open source framework for
developing RESTful Web Services in Java

 It has advantages such as:
◦ Using Java and the Java Virtual Machine, make it

easy to build RESTful Web Services
◦ Contains support for Web Application Description

Language (WADL)
◦ Contains Jersey Test Framework which lets run

and test Jersey REST services inside JUnit
◦ Supports for the REST MVC pattern, which would

allow to return a View from Jersey services rather
than just data

60

 RESTeasy is a JBoss implementation of JAX-RS

 It can run in any Servlet container

 It has benefits such as:
◦ Portable to Tomcat and many other app-server

◦ JAXB (Java Architecture for XML Binding) marshalling
into XML, JSON etc.,

◦ Digital Signature and encryption support with S/MIME
and DOSETA (Domain Security Tagging)

◦ Rich set of providers for: XML, JSON (JavaScript Object
Notation), YAML (Yet Another Markup Language), XOP
(Xml Binary Optimized Packaging) etc.,

61

62

JAX-WS JAX-RS

It is a Java API for XML-Based Web Services It is a Java API for RESTful Web Services

The are two ways to write JAX-WS
application code: RPC style and Document
style

There are two main implementations of
JAX-RS: Jersey and RESTeasy

JAX-WS follows the SOAP protocol and
interacts in XML messages

JAX-RS, as it has no fixed structure to it, can
communicate through XML, HTML, JSON,
and HTTP

It provides a standard way to develop a Web
Services in SOAP notation

RESTful Web Services are represented as
resources and can be identified by Uniform
Resource Identifiers (URI)

Web Services are called/invoked through
remote procedure calls

Remote procedure call in this case is
represented a HTTP- request and the
necessary data is passed as parameters of
the query

SOAP define too much standards than REST
REST does not define too much standards
like SOAP

JAX-WS is used for mainly building up web-
services on an enterprise-level

JAX-RS is mostly used in smartphone apps
and for purposes like Web Integration

63

	Slide 1: “XML and Web Services”
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: XPath
	Slide 18: XSLT
	Slide 19
	Slide 20: <xsl:template> Element
	Slide 21: <xsl:value-of> Element
	Slide 22: <xsl:for-each> Element
	Slide 23: <xsl:if> Element
	Slide 24: <xsl:apply-templates> Element
	Slide 25: Web Services
	Slide 26: ..contd
	Slide 27: Benefits of Web Services
	Slide 28: ..contd
	Slide 29: ..contd
	Slide 30: Types of Web Services
	Slide 31: SOAP vs. REST
	Slide 32: Service Oriented Architecture (SOA)
	Slide 33: ..contd
	Slide 34: Components of Web Services
	Slide 35: Simple Object Access Protocol (SOAP)
	Slide 36: ..contd
	Slide 37: Web Services Description Language (WSDL)
	Slide 38: WSDL Document Structure
	Slide 39: ..contd
	Slide 40
	Slide 41: ..contd
	Slide 42: ..contd
	Slide 43: <types> Element
	Slide 44: <message> Element
	Slide 45: <portType> Element
	Slide 46: <binding> Element
	Slide 47: <port> Element
	Slide 48: <service> Element
	Slide 49: Universal Description, Discovery, and Integration(UDDI)
	Slide 50: How UDDI can be used?
	Slide 51: Java Web Services
	Slide 52: Java Web Services API
	Slide 53: ..contd
	Slide 54: JAX-WS
	Slide 55: RPC Style
	Slide 56: ..contd
	Slide 57: Document Style
	Slide 58: ..contd
	Slide 59: RPC vs. Document
	Slide 60: Jersey Framework
	Slide 61: RESTeasy Framework
	Slide 62: JAX-WS vs. JAX-RS
	Slide 63

