
UtrltT-7

L

{) "***Y
o{

rle ert Tutl) '

t In &rffif

L) Lor,o
*d" ""'l

eahe

e\ f: l^ ^ ,o r,PJ. 4urr#"*/f&f

q UlSe'

i>L L'+)

SCT;P
J"
L-/"ry

Nebslkb
cohile u,$t'? a-n

rfffdnstLn

;) l ,tr-) , f "''' ? r't.-'1
l'- ,,

,

? r,, P'rirnn'ril'l/ ufud' h
t [^ t-

a.nC, Neb aPPkca't'm*

ex;xbtnX

t{ tp
pW"rn.
W+u-(JnL w

s

.S
I

)

I

attrrnnk

L

Side oaeb sce Ph'"'g

fhe cutlvrt'A€ q scrtPanf

{he ofifl;*l UNZX t"totl-d, '{ loarl" il{n"L

and 7c L nl"cL aqe n'CI fi
Scalph''V
avarh4e

") Jf* rniczahn+t N06W a{ V;u'"-t' &oac n*nL

hcl;w
^ l]
I lt

X Cor+wIJ''
A t* ,r,r&r? o@Yo*nd'

,&S;'l* ""d
Senvt6- sid'e

b) ,Jlru waild'' '+ V I

,) Jt* u*ry'I c!;
'/

Peb SwtPhrg

rl.
downlen (/3

'

c)

{)

Anllo - LnNC'rb

ff,leav" L' w'e Vaxajblu'

hull'-NntC="lJ'll'hl"U!')
ylb hullo - Ncruld *^v * nuffi = +?

'O,tt,S
!-aV -YtUfl

ps D :) u r.tbsenen> 7 rl' i l'" I l' - ('ncrlt' *
l-hllo t^ronW(

^f uenna M5
,futob

b
InJ"b ScuolD'/'?,

,a -L
CPw*twu

;n't't"

"*A
-fwrn a'

u,"I,f'[<,e S c'tt''e-ru
S*"pry

ffr. ,{""/"' 9mn M
we-b sc6arq Exl"ufuV

N"b sl kb.
CIne (f) rnd-&

Nrb **'ofrr# frrlrW (N) clt'scov"'ruy

@) L;,W *Jfr. lileb

ftLLYyL

P

+7
-'ftunn

cl4r,* bot :rilgei qb? k "*r*'* 'fe

ufiLn

P6rtr"r''b

4

I

v

L

"tirY eqltTL

i,nhrrpre l."L e,ne .!;rre

J

LScxpt'"wr

d*, rlot z'

wP+
tsN,

{n0,'rt

P

OEN/f b,,(ta.rn

R"rhX'

Nde.1s
P{lfr""
peol'

\Th I Cnrvu

o

ck

,r*r,r ot{-w,

@ f wcA*"!;q

oTL alto Nh LLherh

5[,a"
ffu*l'ln'trn

fl)

P"ttre"mYrLhrY
*,4ry * Nfrle

,14 P"'IYN

,fi

c#
c++

P'P
pdth.*

{aVa
n^, rn Qrorl,t ehn

7

A. -,
1

(

ih&G

?

r{le.

,a*oC

7

S cvr Ph;aX

cCId.e

,1" n"*
ul-

GU'P''"
,*,4- ,l*d

Yflry be Sfuueot
't'h^* c'*$)td'

nirT
r r,#/u!,*"*[n //'* ^1"aLe fi"

ftugfutfu{Y'b

*t*l b^frW

5{>
Urltt

fi

J/t V€L

ffiry

)
Cbla

c'
i

){nsLfld,fujh)Lo(^)tt
Io]

L" Pa'o?'4"Jbi; bertie,nUCt'to
Iemaktuih

dmtf ,

ov> fffe Wv€{
ro llect

cev>3
C@pq"

cn-n
I 5dP

q

IM
W da*zu"#orr"t

C{LI/Lc/

trcrlile

Pztnz tl Con^ :

7) O-W*
i) Gooil, O
ri) Deuyu

ble N fift- r r*{ug @tuys,,f,'tu/"3
dhtf r ft, c"taud, Sarvi009lr!

o,ytY{" q,u,tCrfr tuffip
@

I L^fr.tn q
tru nfrrLt

4 No+ ,*rff
qSt* Sowcz

.,nn a)4#ob/e.

c&e hNrd,h2 a,cc*xvlile,

c)frntfene *rtr ?Tae anL ueuta Me ufr
q

tbrL in
lixe oTavaSrrtp{,

S c* pfi ,,ylt L *,flur7a), V P"V**-rf ,L

aue

t tr)

tt* *qq",ry{ eu?i

mPretrScriP

b^jgd'iF
dd(n

/Tunn

lrts.A -,

mandt>

*rhu

h -bd,b Pe

ebiT'

r*,*[^k
I

t
rrl&kwl

nb rf*.4"b

irh *oel'nnu

le)^fl.uo#

nr[neaLih
lo Am

b-fiosr

,f

oL onrn -

'/j J&

vu{b **outt*nCo

rrlad'tnetufu40T,{) e
Pr€y

& lu,

Comf,lw

i/3

4r*,a ft"

cod*

erb ?2 ,Ycdrrx.y

Cornpile ff"

u

\

@

Efi'ffi,T

l"*

hwrL*fu

.\

L

Sc,fiPa" t-itt')t

*?[u La wYste- o'''d'

A'+''{@ tr' shuntlhn

'ffi;,bu'?drjtr
^ot',L

th ,lr,'W"6ff'*"nfl
*h

*a'wot '!'rtT-

a, ho*t

or-p o{to
IL vepoeh

duffin
AL l"ck s of

CWL
den+Tn,

vrftnnrw'L

rL f P'
fine a*

chrrdnff
a, tf rfle

.t
StpfPrar'

I{ rP 3i

cohl,rge "

Mat ucellan

Ner^: TiwninnL

Ps Df \
"

wbgsden) vubt1'

,*bt a,,.'l ,lPg3

h*ltu - worL& "rb

) v,fo
IL

CY s'r -ror ngao)

hul[t - usad"rb

wbf, " l+ll' l^lontd"

VWNon aoe;l
etW' o 3-E)

N

eclc

P

n t^t rlt I
A"lu -,tr6,[d"'{b

PE D: \ vrbt s'*v* b'

D CT7P * V
t4 LL'

V*C "-banffuaft<'c\rtlffl t

\a

-lr*t: v&hLl, f**ol'/tr N

dpwnL'nd'

: Nifrt"od

+: PuN
/

a a,c.*PL

7nP#

orvl*tf N?jf"/oNKit Rq -YDev n:tta

E a,.6"X

l,/

"--9

-J

.,-
fiAJ+g

cqU
dt
J ?^ -g\ S' tr"5 o -\

s-i -z

{, fl q'
zo#

IIF'\9c&afD
\-/ 2gfi
v

skP 5;

sw6:
Ebe41 '

Ezar,eae

.b
I

+ol
4.,
,. .<1
IJ
v] J() .r

"6SL,e+ 8: N"tt SW 1: ftn;*l"

S mall't CydE

ftto eY{'ra rt}e'net

)

Introduction to Scripting Languages
1. All scripting languages are programming languages.
2. The scripting language is basically a language where instructions are

written for a run time environment.
3. They do not require the compilation step and are rather interpreted. It brings

new functions to applications and glue complex system together.
4. A scripting language is a programming language designed for integrating

and communicating with other programming languages.

There are many scripting languages some of them are discussed below:

1. bash: It is a scripting language to work in the Linux interface. It is a lot
easier to use bash to create scripts than other programming languages. It
describes the tools to use and code in the command line and create useful
reusable scripts and conserve documentation for other people to work with.

2. Node js: It is a framework to write network applications using JavaScript.
Corporate users of Node.js include IBM, LinkedIn, Microsoft, Netflix,
PayPal, Yahoo for real-time web applications.

3. Ruby: There are a lot of reasons to learn Ruby programming language.
Ruby’s flexibility has allowed developers to create innovative software. It is
a scripting language which is great for web development.

4. Python: It is easy, free and open source. It supports procedure-oriented
programming and object-oriented programming. Python is an interpreted
language with dynamic semantics and huge lines of code are scripted and
is currently the most hyped language among developers.

5. Perl: A scripting language with innovative features to make it different and
popular. Found on all windows and Linux servers. It helps in text
manipulation tasks. High traffic websites that use Perl extensively include
priceline.com, IMDB.

Advantages of scripting languages:
1. Easy learning: The user can learn to code in scripting languages quickly,

not much knowledge of web technology is required.
2. Fast editing: It is highly efficient with the limited number of data structures

and variables to use.
3. Interactivity: It helps in adding visualization interfaces and combinations

in web pages. Modern web pages demand the use of scripting languages.
To create enhanced web pages, fascinated visual description which
includes background and foreground colors and so on.

4. Functionality: There are different libraries which are part of different
scripting languages. They help in creating new applications in web
browsers and are different from normal programming languages.

Application of Scripting Languages: Scripting languages are used in
many areas:
1. Scripting languages are used in web applications. It is used in server side

as well as client side. Server side scripting languages are: JavaScript, PHP,
Perl etc. and client side scripting languages are: JavaScript, AJAX, jQuery
etc.

2. Scripting languages are used in system administration. For example: Shell,
Perl, Python scripts etc.

3. It is used in Games application and Multimedia.
4. It is used to create plugins and extensions for existing applications.

1

What is a ScriPting Language?

Scripting languages help in automating various software aPPs, web Pages in a

browser, shell usage of an OS (oPerating system), etc. The like

VBScri Perl, J do not ulre they have less access

comPuter ve abilities.Itis because these rather run on an original

programming language 's subset. An examPle here could be that the JavascriPt won'tany

have the abilib'to access your file sYstem'

It doesn't PrimarilY focus on building
2. GenerallY a 1S

applications- but it can render or to an application that alreadY exists. It

basicallY helps in writing codes for targeting a software sYstem' Thus, it can also

automate a given operation on any software sYstem. So basicallY, r.#* act as a set

of instructions that tar get anY software sYstem'

and become more Powerful' TheY

3. The scriPting languages have eventuallY evolved

now no longer create minute scriPts for automating a software sYstem's operations'

One can also use scri for rich a lications. These can

customize, mani automate an system 's facilities. The scriPting

languages come with a mechanism

What is a Programming Language?

that exPoses functionalitY to the Program control'

S

a

Hr-:?H the programming languages present inthemarket, specific-documentation

dominates a majority of them. ati tt. other languages comprl::^dominant

implementation (tre#d as a ,.f...n.t;'L ;qple tiere-is that the ISO standard

associates with the c programming l.rgfi;. on the ottrer hand, languages like Perl

\.-

a

belong to the latter category'

to runthem
to deploY a

writing the

a One can use a Programming language for transforming data.It basically happens

when creating those CPU instructions that jot down the input info into the output

An examPle here is using a set of conditions for solving an equation set' One can

consider various Programming languages such as C, C++, Scala, Java, etc., as

general-purpose languages . These fall under the
you can run them through

You must add some texts to write Ltre score co*i,

p compiler. As a result, it would create various binary instructions.

Diff'erence Between Scripting and Programming Languages

Parameters Scripting Language Programming Language

Type
Language

Use

The scripting languages are

interpreter-based languages.

The scripting languages helP

in combining the existing
ponents of an aPPlication.

A user needs to run scriPting

languages inside an existing

program. Thus, it's Program-
dependent.

Scripting languages convert

high-Ievel instructions into

machine language.

The programming languages

are compiler-based languages

Programming languages are

program-indePendent.

Programming languages helP

in converting the full Program
into the machine language (at

once).

Running of
Language

Conversion

Compilation

Design

File Type

ComplexitY

These make the coding Process

simple and fast.

Scripting languages don't
create anY file UPes.

These are very easY to use and

easy to write

These.lanEges first need a

compllatlon. "

These provide full usage of
the languages.

Programming languages

create .exe f,tles.

These are PrettY comPlex in

terms of writing and usage'

t!

ii
::

tt1

The programming languages

help in develoPing anYthing

from scratch.

Type of
Coding

Scripting languages helP write

a small piece of an entire code'

Programming languages helP

write the full code concerning

a program

You don't need to comPile

these languages.

Requirement
of Host

Length of
Codes

Support

Cost

These take less time because

involve lesser code

We usuallY interPret a

scripting language in another

program.

Scripting languages requre
hosts for execution'

These take more time because

a programmer must write the

entire code'

Programming languages are

self-executable. TheY don't

require anY host.

These require numerous lines

of coding for a single

function.

These provide rich suPPort for

graphic design, data tYPes,

and user interface design'

Maintaining a Programmmg
language is comParativelY

more expenslve.

C, C++, COBOL, Basic, VB,

C#, Pascal, Java, etc'

\t
These involve very few and

short coding lines.

These provide limited suPPort

to data types, user interface

design, and graPhic design'

VB ScriPt, Perl, RubY, PHP,

JavaScriPt, etc.

The comPile results of a

programming language are

stand-alone. No other

program needs to interPret it'

These involve high
maintenance.

These involve very low
maintenance

,, Developing
.. Time

t t , : l::l lll. l

::
' l ::l::l:l l::::l:lrl::rrrr:l i:::l

L t. :.: I ll l.lll: : I l: l:l lllll

Interpretation

Maintenance

Example

It is easier and cheaPer to

maintain a scriPting language'

:

Ruby

1. Ruby is a computer programming language developed in 1995 by Yukihiro

Matsumoto. He wanted to create a flexible, object-oriented language that

programmers would enjoy using. They enjoyed it enough that Ruby became one of

the most popular languages for developing web applications.

2. It’s a general use language that’s popular in the industry. Apple, GitHub, Twitter,

Hulu, ZenDesk, and Urban Dictionary are websites developed with Ruby,

demonstrating its versatility. Ruby is a general use language that's more popular in the

industry than in science or academia.

Using Ruby to build applications

1. Ruby is mainly used to build web applications and is useful for other programming

projects. It is widely used for building servers and data processing, web scraping, and

crawling.

2. The leading framework used to run Ruby is Ruby on Rails, although that’s not the

only one. Ruby on Rails was released in 2004 and made the language much easier to

use. That’s one reason developers at many start-ups use Ruby to build their

applications.

Features

1. Ruby is a general-purpose, object-oriented programming language that runs on Mac,

Windows, Unix, and most operating systems.

2. It has a flexible approach to solving problems, which some programmers appreciate

and some do not.

Advantages

1. Ruby’s syntax is similar to English, so many English speakers find it easy to learn and

use. The program itself is free, and it’s open-source, with users sharing improvements

and ideas for how to use it.

2. The Ruby community tends to focus on web development over other types of

programming and has created a vast library of program elements.

Disadvantages

1. One of the disadvantages of Ruby’s user-friendly approach is that bugs can get hidden,

making it more difficult to find and fix code problems, mainly because the

documentation for Ruby isn’t as complete as it is for some other languages.

2. Also, Ruby and Ruby for Rails tend to take longer to boot and have a slower runtime

than other programming platforms.

The Benefits and Applications of Using Ruby as a Programming Language

1. Ruby is one of the most reliable programming languages in town, which comes with

its own Rails framework. The object-oriented programming language was first

developed in 1995 and is among the top 10 programming languages, reviewed by

multiple analysts.

2. Developers working on the Ruby platform can build high quality web applications,

which boast clean architecture and implement all of CSS, HTML and JavaScript

files. Ruby was further augmented with a proper framework in Ruby on Rails, which

has become even more popular over time and is now extensively used by many.

3. Ruby is considered by a number of programmers and developers today and comes

with a wide range of features. In this article, we take a look at some of the benefits

and applications of Ruby as a programming language.

Easy Changes

1. Ruby is a simple programming language, which can simplify the changes in codes

for developers. Developers would know that most projects require extensive

changes, which are easy to manage on Ruby. Ruby can simplify the change process,

which gives businesses a simple solution to their problems.

2. Ruby can also prove extremely useful for organizations looking to scale up their

operations in the near future. The application can easily be grown over time and

processes can be updated easily.

Extremely Secure

1. Ruby is ranked among some of the best programming languages and is trusted by

developers for this very reason. Ruby puts a strong emphasis on securing solutions

made on it.

2. The programming language stores and holds all objects based on reference rather

than value to prevent any data from being hijacked or overwritten.

3. The secure environment on Ruby allows organizations to secure all forms of

sensitive information and make sure that the information isn’t accessible to external

threat actors.

Fun to Code

1. Programming and coding on Ruby can be simple and fun for all developers.

Developers who have worked on Ruby will be able to vouch for its interactive UI

and how it is a lot easier to understand than other programming languages.

2. Ruby’s simple syntax makes it perfect for newbies who are still getting a hack of

how the process works. Ruby can simplify difficult programming concepts and give

programmers a chance to work on them and provide simple solutions. The simple

syntax also ensures that programmers can create solutions easily without spending

too much on them.

Faster Processing

1. It is a lot easier for developers to configure and develop solutions on Ruby. The

programming language comes with multi-threading or native thread support, which

can allow the solution to operate multiple programs at one time without slowing

down your system at any time. The fast web application makes Ruby extremely

suitable for projects with a quick ETA.

2. Faster operations are also possible because of the portability of the language. The

language is extremely portable, which ensures that it can be run on almost all

operating systems.

3. Ruby isn’t dependent on any external factors, which makes it easy for developers to

use it across operating systems. Ruby isn’t just quick but can also be used

extensively for cross-platform programming and development.

Open Source and Flexible

1. Businesses today like using Ruby because it is extremely flexible to use and comes

with an open-source library. The flexibility offered by Ruby helps give developers

the option to add multiple objects and methods to the solution.

2. ROR developers can add objects to all existing classes without disrupting stability

in any way. This can help developers make flexible APIs.

3. Additionally, Ruby is also open source in nature, which gives developers the

feasibility to share their codes with other programmers.

4. The open-source network can help make programming easier for new beginners. All

users can gain access to helpful codes and can use them in their solutions.

Consistent in Nature

Perhaps the biggest benefit of using Ruby is that it is generally consistent in nature. The

syntax for Ruby is generally consistent and allows you to build skills and solutions

without learning a lot of new things. You can create programs in the language without

going through a significant learning curve.

Application of Ruby as a Programming Language

1. Ruby can work well for dynamic websites and long-term solutions. Ruby is the

perfect solution for programming a general-purpose application.

2. Ruby comes with all the necessary adjustments required to run sprawling apps such

as Shopify and GitHub.

3. Ruby is also preferred by Bloomberg, Airbnb, Apple, Groupon, Hulu and Dribble,

among other big names. The following categories can benefit the most from the

provisions on Ruby.

https://programmers.io/hire-ruby-on-rails-developers

E-Commerce Sites

1. Ruby can help facilitate the development of e-commerce sites and solutions. The

programming language provides solutions that can meet business requirements.

2. Ruby can help assist in uploading product images, setting price algorithms, updating

image processing and a number of other processes.

Content Sites

1. All content sites that upload audio content, reading material or visual content can

benefit from Ruby.

2. Ruby comes with a fast upload procedure, and the coding on it is relatively simple.

The simple operations make coding easier for all involved.

Social Networking Sites

1. While Ruby isn’t the default programming language for large web apps with

millions of users interacting at one time, the plug-ins within Ruby can help manage

the operations well.

2. Ruby is an ideal solution for your development project as it helps improve upload

times and can simplify the programming process. With the information in this

article, you can make a concrete decision on whether to use it for your next project

or not.

https://programmers.io/why-ruby-on-rails-for-ecommerce/

ffitr

Rail's latest version[Rail 5.0.1 released on December 21,

on Rails is used for both front end back end. it is like a colll to-dw:eiop
Awe6 applicatioi. Sorne iilportanflGaluref of Ruby

f4an>r,cho*aettf, L/rh[*k '{ Tecfr
I

i,t fh 1"/, t?80'b.

Ruby on Rails lntroduction

August ZO06,ltffiuld ship Ruby on s with Mac OS Xvl-0.5

Ruby on Rails or also known as rails is a server-side web application devel ment
tramewor that is written in the Ruby programming ,, ?frd it is developed
by David Heinemeier Hansson under the MfT-[itense. It supports MVC(model-
view-controller tecture p rovi d e! a-te faul[Ftru cture for database, web

and web servlces, it als O USCS or trans
ta an an JavaScript for the user temph?sizes the use of

other well-known software engineering pattern and paradigms like:
. Don't Repeat Yourself [DRY): It is a principle of software

development to rqducing the repetition of infbrmation or codes.
. Convention Over Configuration (CoC): It provides many opinions for

the best way to do many things in a web application.
Ruby on Rails was first released in |uly 2004 but until Fe 2005 did not share
the commit rights. In
"Leopard". Ruby on
20L6. Action cable, Turbolinks 5, and API e ntroduced in this versio

Why Ruby on Rails? JSeN i Aatu.Suipt CI$** fre,,*w,
. It allows you to launch a faster web cation.

Saves your using Ru on Rails framework.
e ps us with maintaining and avoiding problems with stuff m igration.

Ruby on Rail Framework makes our app faster and safe r.
We can easily update our a with the latest functionali
It uses M techni ues to write programs.

Where to use by on ?

You can use on Rails in various area of web deve lopment like lna

As we know that most of the languages like Java, HTML, CSS, etc. do not cover the

front end and back end.+ They either only for tfiffiacEffii or fro?the front end but Ruby

a

a

a

a

a

on are:

1. Model-view-controller Architecture: Ruby on Rails used MVC arohitecture, and

it contains three colnponents, i.e., model, view, and controiler. H--ereJhe rnodel ii-used
to maintain the relationship o ect and database, the view is t?ilffies that
are used to build the data users for web and the controller is used to
merge l1l IS generally used fbr developlng user lnterfaces

that three onents so that it can separate the
ts to and get from the

fo{twn r#^*
Tfre ,rtrrle{, ,

L
k#mbi

Ttnuur t,

internal entation of on from the way it

& {}^rdhsp-ci {rc$

{n

@z) irt @

I a

WcLh o*-rtnLrrne

2. Active Records: The active record framework is intro
eveloper to

j

I cule qnfre
bafuh Fn-bc

e
Rails. It is a rful librarY that allows the d

to write rams
r configuration: ln Ruby on Rails, a Programmer can

6. nven on ove
only sPecifY the unconventional asPects of the application

7. Scaffolding: Ruby on rails Provides a scaffolding featu re in which the

develoPer is allowed to define how the a database works. After

defining the work of the aPPlication atabas e the framework automa tically

generates the u ired code according the g iven defin n. This tech nique

creates i ce a mat'rcatlY

Advantages of RubY on Rails

Tooting: Raits provides tooling that helps us to gelivgf rnggfggty!99 i n less

tffirri"": There's a 3rd party moduie(geml for lust about anything we can think

3;r" euarity: Ruby code quarity significan,y higher than PHP or \odeJ9

a

a

a

a

equivalents.
Test Automation: The Ruby community is big into and

testing.
T3-rge CommunitY

another language
ProductivitY: RubY is

B!
Disadvantages of RubY on Rails

Runtime SPee

test automation and

: Ruby is large in the commun
Its productivitY is

know that RubY on Rails is ideal for standard

en betwe en com onents and models. But

a

a

a d: The run time of Ruby on Rails is slow as compare to

Node.Js and Golanq.
Lack of FlexibilitY: As we

app lications due to its
to addi

g

unlque ona an GU nrn
€=
apps It ls

a

wTenlt comes
challenging.
Boot Speed: The boot sPeed

--:th6 numher
is also a d
of gem depe

rawback of ROR' Due to the

ndenci
---.

es and ttles it takes some
dependence uPon

ance
time to start which can obstruct the d

Documentation: To find good documentation is hard r the less PoPu[ar gems

and for libraries that ma u m NS

Multithreadin : Ruby on Rails suppo rts multithreading, but some lO libraries

I

a

do not suppo rt rnultithread! because they keep hold of the g reter

M e{a"pvtsgsa rnnl irt4, T e k Th

/;"A hro",^il,rlgz 'tP i{xil{
{o o vaneh+ o+ Naq,5 ar PvgflzerYt

Crr') can- ,;,;fulak ith:el+:

a

a

Difference between Ruby and Ruby on Rails
1" Ruby:
Ruby is an object-oriented scripting language launched in 1995 and is known as ageneral-purpose programming languug. ti was programmed in c programminglanguage' Ruby is a secured program-irg language

"io
iir rv",",. i, similar to perl

and Pvthon' It was developed o, it . principle o-rur".r interface design and it is mainlyused to develop desktop applications. While developing applicationsLainly c**, Java,VB.net are used"
Some of the top companies which are using Ruby are Github, Twitter, Airbnb,SCRIBD, Slideshare, Fiverr, etc.
Pros of Ruby:

1. Good memory Management & Garbage Collection.
2. Good Dependenc), Management.
3. Instant Gratification.

Cons of Ruby:
l. Syntax Complexity and error arise.
2. Supports multiple programming paradigms
3. Shared Mutable State.

2. Ruby on Rails :

Ruby on Rails is a web app development framework based on MVC system and it isknown as a framework roi data base driven web app. It was programmed in Rubyprogramming language. It is considered as more rc.u." trran nuuf tanguage and itssyntax is similar to Phoenix in Elixir, Python. It was developed on the principle of DRy(Don't Repeat Yourself) and coc (convention over configuration) and it is mainlyused to develop y.b applications. while developing applicationsmainly HTML, CSS, JavaScript an^d_XryLare used.

some of the top companies which are using Ruby on Rails are Bloomberg,Crunchbase, zendesk, pIXLR, etc.

Pros of Ruby on Rails :
l. Secure Tool
2. Versatile
3. Cost-Effective

Cons of Ruby on Rails :
t. Runtime Speed and performance.
2. Absence of Flexibility.
3. High Expense in the Development.

Difference between Ru and Ru on Rails :

S.NO. RUBY RUBY ON RAILS

01.
Ruby is an object-oriented scripting
language launched in 1995.

Ruby on Rails is a web app development
framework based on MVC system.

02
It is known as a general-purpose
programming language.

Where as it is known as a framework for
data base driven web app.

03
It was programmed in C programming
language.

It was programmed in Ruby
programming language.

04
It is considered as a secure programming
language.

While it is considered as more secure
than Ruby language.

05. It is not a framework.
While it is a web development
framework.

06
Ruby is commonly used in static website
development.

Ruby on Rails is not generally
recommended when creating static
website.

07

Ruby programming language is
considered as taking inspiration from
Perl and Smalltalk.

Ruby on Rails is considered as taking
inspiration from Django, Python's
Larave| and PHP, respectively.

08
Ruby programming language is used to
develop desktop applications"

While it is used to develop web
applications.

09
It was developed on the principle of user
interface design.

It was developed on the principle of
DRY and COC.

10. Its syntax is similar to Perl and Python.
Its syntax is similar to Phoenix in Elixir,
Python.

11

While developing applications mainly
Q**, Java, VB.net are used.

While developing applications mainly
HTML, CSS, JavaScript and XML are
used.

12.

Some of the top companies which are
using Ruby are Github, Twitter, airbnb,
SCRIBD, slideshare, fiverr etc.

Some of the top companies which are
using Ruby on Rails are Bloomberg,
crunchbase, zendesk, PIXLR etc.

CHAPTER 2

The Structure and Execution of Ruby
Programs

25

This chapter explains the structure of Ruby programs. It starts with the lexical structure,
covering tokens and the characters that comprise them. Next, it covers the syntactic
structure of a Ruby program, explaining how expressions, control structures, methods,
classes, and so on are written as a series of tokens. Finally, the chapter describes files
of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1 Lexical Structure
The Ruby interpreter parses a program as a sequence of tokens. Tokens include com-
ments, literals, punctuation, identifiers, and keywords. This section introduces these
types of tokens and also includes important information about the characters that
comprise the tokens and the whitespace that separates the tokens.

2.1.1 Comments
Comments in Ruby begin with a # character and continue to the end of the line. The
Ruby interpreter ignores the # character and any text that follows it (but does not ignore
the newline character, which is meaningful whitespace and may serve as a statement
terminator). If a # character appears within a string or regular expression literal (see
Chapter 3), then it is simply part of the string or regular expression and does not
introduce a comment:

This entire line is a comment
x = "#This is a string" # And this is a comment
y = /#This is a regular expression/ # Here's another comment

Multiline comments are usually written simply by beginning each line with a separate
character:

#
This class represents a Complex number
Despite its name, it is not complex at all.
#

Note that Ruby has no equivalent of the C-style /*...*/ comment. There is no way to
embed a comment in the middle of a line of code.

2.1.1.1 Embedded documents

Ruby supports another style of multiline comment known as an embedded document.
These start on a line that begins =begin and continue until (and include) a line that
begins =end. Any text that appears after =begin or =end is part of the comment and is
also ignored, but that extra text must be separated from the =begin and =end by at least
one space.

Embedded documents are a convenient way to comment out long blocks of code with-
out prefixing each line with a # character:

26 | Chapter 2: The Structure and Execution of Ruby Programs

=begin Someone needs to fix the broken code below!
 Any code here is commented out
=end

Note that embedded documents only work if the = signs are the first characters of each
line:

=begin This used to begin a comment. Now it is itself commented out!
 The code that goes here is no longer commented out
=end

As their name implies, embedded documents can be used to include long blocks of
documentation within a program, or to embed source code of another language (such
as HTML or SQL) within a Ruby program. Embedded documents are usually intended
to be used by some kind of postprocessing tool that is run over the Ruby source code,
and it is typical to follow =begin with an identifier that indicates which tool the
comment is intended for.

2.1.1.2 Documentation comments

Ruby programs can include embedded API documentation as specially formatted com-
ments that precede method, class, and module definitions. You can browse this
documentation using the ri tool described earlier in §1.2.4. The rdoc tool extracts doc-
umentation comments from Ruby source and formats them as HTML or prepares them
for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see
the file lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or
method whose API they document. They are usually written as multiline comments
where each line begins with #, but they can also be written as embedded documents
that start =begin rdoc. (The rdoc tool will not process these comments if you leave out
the “rdoc”.)

The following example comment demonstrates the most important formatting ele-
ments of the markup grammar used in Ruby’s documentation comments; a detailed
description of the grammar is available in the README file mentioned previously:

#
Rdoc comments use a simple markup grammar like those used in wikis.

Separate paragraphs with a blank line.

= Headings

Headings begin with an equals sign

== Sub-Headings
The line above produces a subheading.
=== Sub-Sub-Heading
And so on.

= Examples

2.1 Lexical Structure | 27

Indented lines are displayed verbatim in code font.
Be careful not to indent your headings and lists, though.

= Lists and Fonts

List items begin with * or -. Indicate fonts with punctuation or HTML:
* _italic_ or <i>multi-word italic</i>
* *bold* or multi-word bold
* +code+ or <tt>multi-word code</tt>

1. Numbered lists begin with numbers.
99. Any number will do; they don't have to be sequential.
1. There is no way to do nested lists.

The terms of a description list are bracketed:
[item 1] This is a description of item 1
[item 2] This is a description of item 2

2.1.2 Literals
Literals are values that appear directly in Ruby source code. They include numbers,
strings of text, and regular expressions. (Other literals, such as array and hash values,
are not individual tokens but are more complex expressions.) Ruby number and string
literal syntax is actually quite complicated, and is covered in detail in Chapter 3. For
now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal
1.0 # A floating-point literal
'one' # A string literal
"two" # Another string literal
/three/ # A regular expression literal

2.1.3 Punctuation
Ruby uses punctuation characters for a number of purposes. Most Ruby operators are
written using punctuation characters, such as + for addition, * for multiplication, and
|| for the Boolean OR operation. See §4.6 for a complete list of Ruby operators. Punc-
tuation characters also serve to delimit string, regular expression, array, and hash
literals, and to group and separate expressions, method arguments, and array indexes.
We’ll see miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4 Identifiers
An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes,
and so forth. Ruby identifiers consist of letters, numbers, and underscore characters,
but they may not begin with a number. Identifiers may not include whitespace or

28 | Chapter 2: The Structure and Execution of Ruby Programs

nonprinting characters, and they may not include punctuation characters except as
described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby interpreter
will issue a warning (but not an error) if you alter the value of such an identifier. Class
and module names must begin with initial capital letters. The following are identifiers:

i
x2
old_value
_internal # Identifiers may begin with underscores
PI # Constant

By convention, multiword identifiers that are not constants are written with under-
scores like_this, whereas multiword constants are written LikeThis or LIKE_THIS.

2.1.4.1 Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct.
The keyword end, for example, is completely different from the keyword END.

2.1.4.2 Unicode characters in identifiers

Ruby’s rules for forming identifiers are defined in terms of ASCII characters that are
not allowed. In general, all characters outside of the ASCII character set are valid in
identifiers, including characters that appear to be punctuation. In a UTF-8 encoded
file, for example, the following Ruby code is valid:

def ×(x,y) # The name of this method is the Unicode multiplication sign
 x*y # The body of this method multiplies its arguments
end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can
include Kanji characters in her identifiers. See §2.4.1 for more about writing Ruby
programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not
enforced for characters outside of that set. An identifier may not begin with an ASCII
digit, for example, but it may begin with a digit from a non-Latin alphabet. Similarly,
an identifier must begin with an ASCII capital letter in order to be considered a constant.
The identifier Å, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes.
Some character sets, such as Unicode, have more than one codepoint that represents
the same character. No Unicode normalization is performed in Ruby, and two distinct
codepoints are treated as distinct characters, even if they have the same meaning or are
represented by the same font glyph.

2.1 Lexical Structure | 29

2.1.4.3 Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have
the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl’s example, Ruby defines a number of global variables that
include other punctuation characters, such as $_ and $-K. See Chapter 10 for a list of these special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs. Instance variables
and class variables are explained in Chapter 7.

? As a helpful convention, methods that return Boolean values often have names that end with a question mark.

! Method names may end with an exclamation point to indicate that they should be used cautiously. This naming convention
is often to distinguish mutator methods that alter the object on which they are invoked from variants that return a modified
copy of the original object.

= Methods whose names end with an equals sign can be invoked by placing the method name, without the equals sign, on
the left side of an assignment operator. (You can read more about this in §4.5.3 and §7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation
characters:

$files # A global variable
@data # An instance variable
@@counter # A class variable
empty? # A Boolean-valued method or predicate
sort! # An in-place alternative to the regular sort method
timeout= # A method invoked by assignment

A number of Ruby’s operators are implemented as methods, so that classes can redefine
them for their own purposes. It is therefore possible to use certain operators as method
names as well. In this context, the punctuation character or characters of the operator
are treated as identifiers rather than operators. See §4.6 for more about Ruby’s
operators.

2.1.5 Keywords
The following keywords have special meaning in Ruby and are treated specially by the
Ruby parser:

__LINE__ case ensure not then
__ENCODING__ class false or true
__FILE__ def for redo undef
BEGIN defined? if rescue unless
END do in retry until
alias else module return when
and elsif next self while
begin end nil super yield
break

30 | Chapter 2: The Structure and Execution of Ruby Programs

In addition to those keywords, there are three keyword-like tokens that are treated
specially by the Ruby parser when they appear at the beginning of a line:

=begin =end __END__

As we’ve seen, =begin and =end at the beginning of a line delimit multiline comments.
And the token __END__ marks the end of the program (and the beginning of a data
section) if it appears on a line by itself with no leading or trailing whitespace.

In most languages, these words would be called “reserved words” and they would be
never allowed as identifiers. The Ruby parser is flexible and does not complain if you
prefix these keywords with @, @@, or $ prefixes and use them as instance, class, or global
variable names. Also, you can use these keywords as method names, with the caveat
that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice
is to treat these keywords as reserved.

Many important features of the Ruby language are actually implemented as methods
of the Kernel, Module, Class, and Object classes. It is good practice, therefore, to treat
the following identifiers as reserved words as well:

These are methods that appear to be statements or keywords
at_exit catch private require
attr include proc throw
attr_accessor lambda protected
attr_reader load public
attr_writer loop raise

These are commonly used global functions
Array chomp! gsub! select
Float chop iterator? sleep
Integer chop! load split
String eval open sprintf
URI exec p srand
abort exit print sub
autoload exit! printf sub!
autoload? fail putc syscall
binding fork puts system
block_given? format rand test
callcc getc readline trap
caller gets readlines warn
chomp gsub scan

These are commonly used object methods
allocate freeze kind_of? superclass
clone frozen? method taint
display hash methods tainted?
dup id new to_a
enum_for inherited nil? to_enum
eql? inspect object_id to_s
equal? instance_of? respond_to? untaint
extend is_a? send

2.1 Lexical Structure | 31

2.1.6 Whitespace
Spaces, tabs, and newlines are not tokens themselves but are used to separate tokens
that would otherwise merge into a single token. Aside from this basic token-separating
function, most whitespace is ignored by the Ruby interpreter and is simply used to
format programs so that they are easy to read and understand. Not all whitespace is
ignored, however. Some is required, and some whitespace is actually forbidden. Ruby’s
grammar is expressive but complex, and there are a few cases in which inserting or
removing whitespace can change the meaning of a program. Although these cases do
not often arise, it is important to know about them.

2.1.6.1 Newlines as statement terminators

The most common form of whitespace dependency has to do with newlines as state-
ment terminators. In languages like C and Java, every statement must be terminated
with a semicolon. You can use semicolons to terminate statements in Ruby, too, but
this is only required if you put more than one statement on the same line. Convention
dictates that semicolons be omitted elsewhere.

Without explicit semicolons, the Ruby interpreter must figure out on its own where
statements end. If the Ruby code on a line is a syntactically complete statement, Ruby
uses the newline as the statement terminator. If the statement is not complete, then
Ruby continues parsing the statement on the next line. (In Ruby 1.9, there is one
exception, which is described later in this section.)

This is no problem if all your statements fit on a single line. When they don’t, however,
you must take care that you break the line in such a way that the Ruby interpreter
cannot interpret the first line as a statement of its own. This is where the whitespace
dependency lies: your program may behave differently depending on where you insert
a newline. For example, the following code adds x and y and assigns the sum to total:

total = x + # Incomplete expression, parsing continues
 y

But this code assigns x to total, and then evaluates y, doing nothing with it:

total = x # This is a complete expression
 + y # A useless but complete expression

As another example, consider the return and break statements. These statements may
optionally be followed by an expression that provides a return value. A newline between
the keyword and the expression will terminate the statement before the expression.

You can safely insert a newline without fear of prematurely terminating your statement
after an operator or after a period or comma in a method invocation, array literal, or
hash literal.

You can also escape a line break with a backslash, which prevents Ruby from auto-
matically terminating the statement:

32 | Chapter 2: The Structure and Execution of Ruby Programs

var total = first_long_variable_name + second_long_variable_name \
 + third_long_variable_name # Note no statement terminator above

In Ruby 1.9, the statement terminator rules change slightly. If the first nonspace char-
acter on a line is a period, then the line is considered a continuation line, and the newline
before it is not a statement terminator. Lines that start with periods are useful for the
long method chains sometimes used with “fluent APIs,” in which each method invo-
cation returns an object on which additional invocations can be made. For example:

animals = Array.new
 .push("dog") # Does not work in Ruby 1.8
 .push("cow")
 .push("cat")
 .sort

2.1.6.2 Spaces and method invocations

Ruby’s grammar allows the parentheses around method invocations to be omitted in
certain circumstances. This allows Ruby methods to be used as if they were statements,
which is an important part of Ruby’s elegance. Unfortunately, however, it opens up a
pernicious whitespace dependency. Consider the following two lines, which differ only
by a single space:

f(3+2)+1
f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since
the second line has a space after the function name, Ruby assumes that the parentheses
around the method call have been omitted. The parentheses that appear after the space
are used to group a subexpression, but the entire expression (3+2)+1 is used as the
method argument. If warnings are enabled (with -w), Ruby issues a warning whenever
it sees ambiguous code like this.

The solution to this whitespace dependency is straightforward:

• Never put a space between a method name and the opening parenthesis.

• If the first argument to a method begins with an open parenthesis, always use
parentheses in the method invocation. For example, write f((3+2)+1).

• Always run the Ruby interpreter with the -w option so it will warn you if you forget
either of the rules above!

2.2 Syntactic Structure
So far, we’ve discussed the tokens of a Ruby program and the characters that make
them up. Now we move on to briefly describe how those lexical tokens combine into
the larger syntactic structures of a Ruby program. This section describes the syntax of
Ruby programs, from the simplest expressions to the largest modules. This section is,
in effect, a roadmap to the chapters that follow.

2.2 Syntactic Structure | 33

The basic unit of syntax in Ruby is the expression. The Ruby interpreter evaluates ex-
pressions, producing values. The simplest expressions are primary expressions, which
represent values directly. Number and string literals, described earlier in this chapter,
are primary expressions. Other primary expressions include certain keywords such as
true, false, nil, and self. Variable references are also primary expressions; they eval-
uate to the value of the variable.

More complex values can be written as compound expressions:

[1,2,3] # An Array literal
{1=>"one", 2=>"two"} # A Hash literal
1..3 # A Range literal

Operators are used to perform computations on values, and compound expressions
are built by combining simpler subexpressions with operators:

1 # A primary expression
x # Another primary expression
x = 1 # An assignment expression
x = x + 1 # An expression with two operators

Chapter 4 covers operators and expressions, including variables and assignment
expressions.

Expressions can be combined with Ruby’s keywords to create statements, such as the
if statement for conditionally executing code and the while statement for repeatedly
executing code:

if x < 10 then # If this expression is true
 x = x + 1 # Then execute this statement
end # Marks the end of the conditional

while x < 10 do # While this expression is true...
 print x # Execute this statement
 x = x + 1 # Then execute this statement
end # Marks the end of the loop

In Ruby, these statements are technically expressions, but there is still a useful distinc-
tion between expressions that affect the control flow of a program and those that do
not. Chapter 5 explains Ruby’s control structures.

In all but the most trivial programs, we usually need to group expressions and state-
ments into parameterized units so that they can be executed repeatedly and operate on
varying inputs. You may know these parameterized units as functions, procedures, or
subroutines. Since Ruby is an object-oriented language, they are called methods. Meth-
ods, along with related structures called procs and lambdas, are the topic of Chapter 6.

Finally, groups of methods that are designed to interoperate can be combined into
classes, and groups of related classes and methods that are independent of those classes
can be organized into modules. Classes and modules are the topic of Chapter 7.

34 | Chapter 2: The Structure and Execution of Ruby Programs

2.2.1 Block Structure in Ruby
Ruby programs have a block structure. Module, class, and method definitions, and
most of Ruby’s statements, include blocks of nested code. These blocks are delimited
by keywords or punctuation and, by convention, are indented two spaces relative to
the delimiters. There are two kinds of blocks in Ruby programs. One kind is formally
called a “block.” These blocks are the chunks of code associated with or passed to
iterator methods:

3.times { print "Ruby! " }

In this code, the curly braces and the code inside them are the block associated with
the iterator method invocation 3.times. Formal blocks of this kind may be delimited
with curly braces, or they may be delimited with the keywords do and end:

1.upto(10) do |x|
 print x
end

do and end delimiters are usually used when the block is written on more than one line.
Note the two-space indentation of the code within the block. Blocks are covered in §5.4.

To avoid ambiguity with these true blocks, we can call the other kind of block a body
(in practice, however, the term “block” is often used for both). A body is just the list
of statements that comprise the body of a class definition, a method definition, a
while loop, or whatever. Bodies are never delimited with curly braces in Ruby—key-
words usually serve as the delimiters instead. The specific syntax for statement bodies,
method bodies, and class and module bodies are documented in Chapters 5, 6, and 7.

Bodies and blocks can be nested within each other, and Ruby programs typically have
several levels of nested code, made readable by their relative indentation. Here is a
schematic example:

module Stats # A module
 class Dataset # A class in the module
 def initialize(filename) # A method in the class
 IO.foreach(filename) do |line| # A block in the method
 if line[0,1] == "#" # An if statement in the block
 next # A simple statement in the if
 end # End the if body
 end # End the block
 end # End the method body
 end # End the class body
end # End the module body

2.3 File Structure
There are only a few rules about how a file of Ruby code must be structured. These
rules are related to the deployment of Ruby programs and are not directly relevant to
the language itself.

2.3 File Structure | 35

First, if a Ruby program contains a “shebang” comment, to tell the (Unix-like) operating
system how to execute it, that comment must appear on the first line.

Second, if a Ruby program contains a “coding” comment (as described in §2.4.1), that
comment must appear on the first line or on the second line if the first line is a shebang.

Third, if a file contains a line that consists of the single token __END__ with no whitespace
before or after, then the Ruby interpreter stops processing the file at that point. The
remainder of the file may contain arbitrary data that the program can read using the
IO stream object DATA. (See Chapter 10 and §9.7 for more about this global constant.)

Ruby programs are not required to fit in a single file. Many programs load additional
Ruby code from external libraries, for example. Programs use require to load code from
another file. require searches for specified modules of code against a search path, and
prevents any given module from being loaded more than once. See §7.6 for details.

The following code illustrates each of these points of Ruby file structure:

#!/usr/bin/ruby -w shebang comment
-*- coding: utf-8 -*- coding comment
require 'socket' load networking library

 ... program code goes here

__END__ mark end of code
 ... program data goes here

2.4 Program Encoding
At the lowest level, a Ruby program is simply a sequence of characters. Ruby’s lexical
rules are defined using characters of the ASCII character set. Comments begin with the
character (ASCII code 35), for example, and allowed whitespace characters are hor-
izontal tab (ASCII 9), newline (10), vertical tab (11), form feed (12), carriage return
(13), and space (32). All Ruby keywords are written using ASCII characters, and all
operators and other punctuation are drawn from the ASCII character set.

By default, the Ruby interpreter assumes that Ruby source code is encoded in ASCII.
This is not required, however; the interpreter can also process files that use other en-
codings, as long as those encodings can represent the full set of ASCII characters. In
order for the Ruby interpreter to be able to interpret the bytes of a source file as char-
acters, it must know what encoding to use. Ruby files can identify their own encodings
or you can tell the interpreter how they are encoded. Doing so is explained shortly.

The Ruby interpreter is actually quite flexible about the characters that appear in a
Ruby program. Certain ASCII characters have specific meanings, and certain ASCII
characters are not allowed in identifiers, but beyond that, a Ruby program may contain
any characters allowed by the encoding. We explained earlier that identifiers may con-
tain characters outside of the ASCII character set. The same is true for comments and
string and regular expression literals: they may contain any characters other than the

36 | Chapter 2: The Structure and Execution of Ruby Programs

delimiter character that marks the end of the comment or literal. In ASCII-encoded
files, strings may include arbitrary bytes, including those that represent nonprinting
control characters. (Using raw bytes like this is not recommended, however; Ruby
string literals support escape sequences so that arbitrary characters can be included by
numeric code instead.) If the file is written using the UTF-8 encoding, then comments,
strings, and regular expressions may include arbitrary Unicode characters. If the file is
encoded using the Japanese SJIS or EUC encodings, then strings may include Kanji
characters.

2.4.1 Specifying Program Encoding
By default, the Ruby interpreter assumes that programs are encoded in ASCII. In Ruby
1.8, you can specify a different encoding with the -K command-line option. To run a
Ruby program that includes Unicode characters encoded in UTF-8, invoke the inter-
preter with the -Ku option. Programs that include Japanese characters in EUC-JP or
SJIS encodings can be run with the -Ke and -Ks options.

Ruby 1.9 also supports the -K option, but it is no longer the preferred way to specify
the encoding of a program file. Rather than have the user of a script specify the encoding
when they invoke Ruby, the author of the script can specify the encoding of the script
by placing a special “coding comment” at the start of the file.* For example:

coding: utf-8

The comment must be written entirely in ASCII, and must include the string coding
followed by a colon or equals sign and the name of the desired encoding (which cannot
include spaces or punctuation other than hyphen and underscore). Whitespace is al-
lowed on either side of the colon or equals sign, and the string coding may have any
prefix, such as en to spell encoding. The entire comment, including coding and the
encoding name, is case-insensitive and can be written with upper- or lowercase letters.

Encoding comments are usually written so that they also inform a text editor of the file
encoding. Emacs users might write:

-*- coding: utf-8 -*-

And vi users can write:

vi: set fileencoding=utf-8 :

An encoding comment like this one is usually only valid on the first line of the file. It
may appear on the second line, however, if the first line is a shebang comment (which
makes a script executable on Unix-like operating systems):

#!/usr/bin/ruby -w
coding: utf-8

* Ruby follows Python’s conventions in this; see http://www.python.org/dev/peps/pep-0263/.

2.4 Program Encoding | 37

Encoding names are not case-sensitive and may be written in uppercase, lowercase, or
a mix. Ruby 1.9 supports at least the following source encodings: ASCII-8BIT (also
known as BINARY), US-ASCII (7-bit ASCII), the European encodings ISO-8859-1
through ISO-8859-15, the Unicode encoding UTF-8, and the Japanese encodings
SHIFT_JIS (also known as SJIS) and EUC-JP. Your build or distribution of Ruby may
support additional encodings as well.

As a special case, UTF-8-encoded files identify their encoding if the first three bytes of
the file are 0xEF 0xBB 0xBF. These bytes are known as the BOM or “Byte Order Mark”
and are optional in UTF-8-encoded files. (Certain Windows programs add these bytes
when saving Unicode files.)

In Ruby 1.9, the language keyword __ENCODING__ (there are two underscores at the
beginning and at the end) evaluates to the source encoding of the currently executing
code. The resulting value is an Encoding object. (See §3.2.6.2 for more on the
Encoding class.)

2.4.2 Source Encoding and Default External Encoding
In Ruby 1.9, it is important to understand the difference between the source encoding
of a Ruby file and the default external encoding of a Ruby process. The source encoding
is what we described earlier: it tells the Ruby interpreter how to read characters in a
script. Source encodings are typically set with coding comments. A Ruby program may
consist of more than one file, and different files may have different source encodings.
The source encoding of a file affects the encoding of the string literals in that file. For
more about the encoding of strings, see §3.2.6.

The default external encoding is something different: this is the encoding that Ruby
uses by default when reading from files and streams. The default external encoding is
global to the Ruby process and does not change from file to file. Normally, the default
external encoding is set based on the locale that your computer is configured to. But
you can also explicitly specify the default external encoding with command-line op-
tions, as we’ll describe shortly. The default external encoding does not affect the
encoding of string literals, but it is quite important for I/O, as we’ll see in §9.7.2.

We described the -K interpreter option earlier as a way to set the source encoding. In
fact, what this option really does is set the default external encoding of the process and
then uses that encoding as the default source encoding.

In Ruby 1.9, the -K option exists for compatibility with Ruby 1.8 but is not the preferred
way to set the default external encoding. Two new options, -E and --encoding, allow
you to specify an encoding by its full name rather than by a one-character abbreviation.
For example:

ruby -E utf-8 # Encoding name follows -E
ruby -Eutf-8 # The space is optional
ruby --encoding utf-8 # Encoding following --encoding with a space
ruby --encoding=utf-8 # Or use an equals sign with --encoding

38 | Chapter 2: The Structure and Execution of Ruby Programs

See §10.1 for complete details.

You can query the default external encoding with Encoding.default_external. This
class method returns an Encoding object. Use Encoding.locale_charmap to obtain the
name (as a string) of the character encoding derived from the locale. This method is
always based on the locale setting and ignores command-line options that override the
default external encoding.

2.5 Program Execution
Ruby is a scripting language. This means that Ruby programs are simply lists, or scripts,
of statements to be executed. By default, these statements are executed sequentially, in
the order they appear. Ruby’s control structures (described in Chapter 5) alter this
default execution order and allow statements to be executed conditionally or repeat-
edly, for example.

Programmers who are used to traditional static compiled languages like C or Java may
find this slightly confusing. There is no special main method in Ruby from which exe-
cution begins. The Ruby interpreter is given a script of statements to execute, and it
begins executing at the first line and continues to the last line.

(Actually, that last statement is not quite true. The Ruby interpreter first scans the file
for BEGIN statements, and executes the code in their bodies. Then it goes back to line 1
and starts executing sequentially. See §5.7 for more on BEGIN.)

Another difference between Ruby and compiled languages has to do with module, class,
and method definitions. In compiled languages, these are syntactic structures that are
processed by the compiler. In Ruby, they are statements like any other. When the Ruby
interpreter encounters a class definition, it executes it, causing a new class to come into
existence. Similarly, when the Ruby interpreter encounters a method definition, it
executes it, causing a new method to be defined. Later in the program, the interpreter
will probably encounter and execute a method invocation expression for the method,
and this invocation will cause the statements in the method body to be executed.

The Ruby interpreter is invoked from the command line and given a script to execute.
Very simple one-line scripts are sometimes written directly on the command line. More
commonly, however, the name of the file containing the script is specified. The Ruby
interpreter reads the file and executes the script. It first executes any BEGIN blocks. Then
it starts at the first line of the file and continues until one of the following happens:

• It executes a statement that causes the Ruby program to terminate.

• It reaches the end of the file.

• It reads a line that marks the logical end of the file with the token __END__.

2.5 Program Execution | 39

Before it quits, the Ruby interpreter typically (unless the exit! method was called)
executes the bodies of any END statements it has encountered and any other “shutdown
hook” code registered with the at_exit function.

40 | Chapter 2: The Structure and Execution of Ruby Programs

Chapter 17

Package Management

with RubyGems

Chad Fowler is a leading figure in the Ruby

community. He’s on the board of Ruby Central,

Inc. He’s one of the organizers of RubyConf. And

he’s one of the writers of RubyGems. All this

makes him uniquely qualified to write this chapter.

RubyGems is a standardized packaging and installation framework for libraries and

applications, making it easy to locate, install, upgrade, and uninstall Ruby packages. It

provides users and developers with four main facilities.

1. A standardized package format,

2. A central repository for hosting packages in this format,

3. Installation and management of multiple, simultaneously installed versions of the

same library,

4. End-user tools for querying, installing, uninstalling, and otherwise manipulating

these packages.

Before RubyGems came along, installing a new library involved searching the Web,

downloading a package, and attempting to install it—only to find that its dependencies

haven’t been met. If the library you want is packaged using RubyGems, however, you

can now simply ask RubyGems to install it (and all its dependencies). Everything is

done for you.

In the RubyGems world, developers bundle their applications and libraries into single

files called gems. These files conform to a standardized format, and the RubyGems

system provides a command-line tool, appropriately named gem, for manipulating these

gem files.

In this chapter, we’ll see how to

1. Install RubyGems on your computer.

2. Use RubyGems to install other applications and libraries.

3. Write your own gems.

203Prepared exclusively for Dr. Eugene Wallingford

INSTALLING RUBYGEMS 204

Installing RubyGems
To use RubyGems, you’ll first need to download and install the RubyGems system from

the project’s home page at http://rubygems.rubyforge.org. After downloading

and unpacking the distribution, you can install it using the included installation script.

% cd rubygems­0.7.0

% ruby install.rb

Depending on your operating system, you may need suitable privileges to write files

into Ruby’s site_ruby/ and bin/ directories.

The best way to test that RubyGems was installed successfully also happens to be the

most important command you’ll learn.

% gem help

RubyGems is a sophisticated package manager for Ruby. This is

a basic help message containing pointers to more information.

Usage:

gem ­h/­­help

gem ­v/­­version

gem command [arguments...] [options...]

Examples:

gem install rake

gem list ­­local

gem build package.gemspec

gem help install

Further help:

gem help commands list all 'gem' commands

gem help examples show some examples of usage

gem help <COMMAND> show help on COMMAND

(e.g. 'gem help install')

Further information:

http://rubygems.rubyforge.org

Because RubyGems’ help is quite comprehensive, we won’t go into detail about each

of the available RubyGems commands and options in this chapter.

Installing Application Gems
Let’s start by using RubyGems to install an application that is written in Ruby. Jim

Weirich’s Rake (http://rake.rubyforge.org) holds the distinction of being the first

application that was available as a gem. Not only that, but it’s generally a great tool to

have around, as it is a build tool similar to Make and Ant. In fact, you can even use

Rake to build gems!

Locating and installing Rake with RubyGems is simple.

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING APPLICATION GEMS 205

% gem install ­r rake

Attempting remote installation of 'Rake'

Successfully installed rake, version 0.4.3

% rake ­­version

rake, version 0.4.3

RubyGems downloads the Rake package and installs it. Because Rake is an application,

RubyGems downloads both the Rake libraries and the command-line program rake.

You control the gem program using subcommands, each of which has its own options

and help screen. In this example, we used the install subcommand with the ­r option,

which tells it to operate remotely. (Many RubyGems operations can be performed either

locally or remotely. For example, you can use the query command either to display all

the gems that are available remotely for installation or to display a list of gems you

already have installed. For this reason, subcommands accept the options ­r and ­l,

specifying whether an operation is meant to be carried out remotely or locally.)

If for some reason—perhaps because of a potential compatibility issue—you wanted

an older version of Rake, you could use RubyGems’ version requirement operators to

specify criteria by which a version would be selected.

% gem install ­r rake ­v "< 0.4.3"

Attempting remote installation of 'rake'

Successfully installed rake, version 0.4.2

% rake ­­version

rake, version 0.4.2

Table 17.1 on the next page lists the version requirement operators. The ­v argument

in our previous example asks for the highest version lower than 0.4.3.

There’s a subtlety when it comes to installing different versions of the same application

with RubyGems. Even though RubyGems keeps separate versions of the application’s

library files, it does not version the actual command you use to run the application. As

a result, each install of an application effectively overwrites the previous one.

During installation, you can also add the ­t option to the RubyGems install com-

mand, causing RubyGems to run the gem’s test suite (if one has been created). If the

tests fail, the installer will prompt you to either keep or discard the gem. This is a good

way to gain a little more confidence that the gem you’ve just downloaded works on

your system the way the author intended.

% gem install SomePoorlyTestedProgram ­t

Attempting local installation of 'SomePoorlyTestedProgram­1.0.1'

Successfully installed SomePoorlyTestedProgram, version 1.0.1

23 tests, 22 assertions, 0 failures, 1 errors...keep Gem? [Y/n] n

Successfully uninstalled SomePoorlyTestedProgram version 1.0.1

Had we chosen the default and kept the gem installed, we could have inspected the gem

to try to determine the cause of the failing test.

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING AND USING GEM LIBRARIES 206

Table 17.1. Version operators

Both the require_gem method and the add_dependency attribute in a Gem::Specification

accept an argument that specifies a version dependency. RubyGems version dependencies are

of the form operator major.minor.patch_level. Listed below is a table of all the possible

version operators.

Operator Description

= Exact version match. Major, minor, and patch level must be identical.

!= Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.

< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the

specified version and less than the specified version after having its minor

version number increased by one. This is to avoid API incompatibilities

between minor version releases.

Installing and Using Gem Libraries
Using RubyGems to install a complete application was a good way to get your feet

wet and to start to learn your way around the gem command. However, in most cases,

you’ll use RubyGems to install Ruby libraries for use in your own programs. Since

RubyGems enables you to install and manage multiple versions of the same library,

you’ll also need to do some new, RubyGems-specific things when you require those

libraries in your code.

Perhaps you’ve been asked by your mother to create a program to help her maintain and

publish a diary. You have decided that you would like to publish the diary in HTML

format, but you are worried that your mother may not understand all of the ins and outs

of HTML markup. For this reason, you’ve opted to use one of the many excellent tem-

plating packages available for Ruby. After some research, you’ve decided on Michael

Granger’s BlueCloth, based on its reputation for being very simple to use.

You first need to find and install the BlueCloth gem.

% gem query ­rn Blue

*** REMOTE GEMS ***

BlueCloth (0.0.4, 0.0.3, 0.0.2)

BlueCloth is a Ruby implementation of Markdown, a text­to­HTML

conversion tool for web writers. Markdown allows you to write using

an easy­to­read, easy­to­write plain text format, then convert it

to structurally valid XHTML (or HTML).

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING AND USING GEM LIBRARIES 207

This invocation of the query command uses the ­n option to search the central gem

repository for any gem whose name matches the regular expression /Blue/. The results

show that three available versions of BlueCloth exist (0.0.4, 0.0.3, and 0.0.2). Because

you want to install the most recent one, you don’t have to state an explicit version on

the install command; the latest is downloaded by default.

% gem install ­r BlueCloth

Attempting remote installation of 'BlueCloth'

Successfully installed BlueCloth, version 0.0.4

Generating API Documentation

Being that this is your first time using BlueCloth, you’re not exactly sure how to use it.

You need some API documentation to get started. Fortunately, with the addition of the

­­rdoc option to the install command, RubyGems will generate RDoc documen-

tation for the gem it is installing. For more information on RDoc, see Chapter 16 on

page 187.

% gem install ­r BlueCloth ­­rdoc

Attempting remote installation of 'BlueCloth'

Successfully installed BlueCloth, version 0.0.4

Installing RDoc documentation for BlueCloth­0.0.4...

WARNING: Generating RDoc on .gem that may not have RDoc.

bluecloth.rb: cc..............................

Generating HTML...

Having generated all this useful HTML documentation, how can you view it? You

have at least two options. The hard way (though it really isn’t that hard) is to open

RubyGems’ documentation directory and browse the documentation directly. As with

most things in RubyGems, the documentation for each gem is stored in a central, pro-

tected, RubyGems-specific place. This will vary by system and by where you may

explicitly choose to install your gems. The most reliable way to find the documents is

to ask the gem command where your RubyGems main directory is located. For exam-

ple:

% gem environment gemdir

/usr/local/lib/ruby/gems/1.8

RubyGems stores generated documentation in the doc/ subdirectory of this directory,

in this case /usr/local/lib/ruby/gems/1.8/doc. You can open the file index.

html and view the documentation. If you find yourself using this path often, you can

create a shortcut. Here’s one way to do that on Mac OS X boxes.

% gemdoc=`gem environment gemdir`/doc

% ls $gemdoc

BlueCloth­0.0.4

% open $gemdoc/BlueCloth­0.0.4/rdoc/index.html

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING AND USING GEM LIBRARIES 208

To save time, you could declare $gemdoc in your login shell’s profile or rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’

included gem_server utility. To start gem_server, simply type

% gem_server

[2004­07­18 11:28:51] INFO WEBrick 1.3.1

[2004­07­18 11:28:51] INFO ruby 1.8.2 (2004­06­29) [i386­mswin32]

[2004­07­18 11:28:51] INFO WEBrick::HTTPServer#start: port=8808

gem_server starts a Web server running on whatever computer you run it on. By

default, it will start on port 8808 and will serve gems and their documentation from

the default RubyGems installation directory. Both the port and the gem directory are

overridable via command-line options, using the ­p and ­d options, respectively.

Once you’ve started the gem_server program, if you are running it on your local com-

puter, you can access the documentation for your installed gems by pointing your Web

browser to http://localhost:8808. There, you will see a list of the gems you have

installed with their descriptions and links to their RDoc documentation.

Let’s Code!

Now you’ve got BlueCloth installed and you know how to use it, you’re ready to write

some code. Having used RubyGems to download the library, we can now also use

it to load the library components into our application. Prior to RubyGems, we’d say

something like

require 'bluecloth'

With RubyGems, though, we can take advantage of its packaging and versioning sup-

port. To do this, we use require_gem in place of require.

require 'rubygems'

require_gem 'BlueCloth', ">= 0.0.4"

doc = BlueCloth::new <<MARKUP

This is some sample [text][1]. Just learning to use [BlueCloth][1].

Just a simple test.

[1]: http://ruby­lang.org

MARKUP

puts doc.to_html

produces:

<p>This is some sample text. Just

learning to use BlueCloth.

Just a simple test.</p>

The first two lines are the RubyGems-specific code. The first line loads the RubyGems

core libraries that we’ll need in order to work with installed gems.

require 'rubygems'

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING AND USING GEM LIBRARIES 209

The second line is where most of the magic happens.

require_gem 'BlueCloth', '>= 0.0.4'

This line adds the BlueCloth gem to Ruby’s $LOAD_PATH and uses require to load any

libraries that the gem’s creator specified to be autoloaded. Let’s say that again a slightly

different way.

Each gem is considered to be a bundle of resources. It may contain one library file

or one hundred. In an old-fashioned, non-RubyGems library, all these files would be

copied into some shared location in the Ruby library tree, a location that was in Ruby’s

predefined load path.

RubyGems doesn’t work this way. Instead, it keeps each version of each gem in its own

self-contained directory tree. The gems are not injected into the standard Ruby library

directories. As a result, RubyGems needs to do some fancy footwork so that you can

get to these files. It does this by adding the gem’s directory tree to Ruby’s load path.

From inside a running program, the effect is the same: require just works. From the

outside, though, RubyGems gives you far better control over what’s loaded into your

Ruby programs.

In the case of BlueCloth, the templating code is distributed as one file, bluecloth.rb;

that’s the file that require_gem will load. require_gem has an optional second argu-

ment, which specifies a version requirement. In this example, you’ve specified that

BlueCloth version 0.0.4 or greater be installed to use this code. If you had required ver-

sion 0.0.5 or greater, this program would fail, because the version you’ve just installed

is too low to meet the requirement of the program.

require 'rubygems'

require_gem 'BlueCloth', '>= 0.0.5'

produces:

/usr/local/lib/ruby/site_ruby/rubygems.rb:30:

in `require_gem': (LoadError)

RubyGem version error: BlueCloth(0.0.4 not >= 0.0.5)

from prog.rb:2

As we said earlier, the version requirement argument is optional, and this example is

obviously contrived. But, it’s easy to imagine how this feature can be useful as different

projects begin to depend on multiple, potentially incompatible, versions of the same

library.

Dependent on RubyGems?

Astute readers (that’s all of you) will have noticed that the code we’ve created so far

is dependent on the RubyGems package being installed. In the long term, that’ll be a

fairly safe bet (we’re guessing that RubyGems will make its way into the Ruby core

distribution). For now, though, RubyGems is not part of the standard Ruby distribution,

Prepared exclusively for Dr. Eugene Wallingford

INSTALLING AND USING GEM LIBRARIES 210

The Code Behind the Curtain

So just what does happen behind the scenes when you call the magic
require_gem method?

First, the gems library modifies your $LOAD_PATH, including any direc-
tories you have added to the gemspec’s require_paths. Second,
it calls Ruby’s require method on any files specified in the gem-
spec’s autorequires attribute (described on page 212). It’s this
$LOAD_PATH-modifying behavior that enables RubyGems to manage
multiple installed versions of the same library.

so users of your software may not have RubyGems installed on their computers. If we

distribute code that has require 'rubygems' in it, that code will fail.

You can use at least two techniques to get around this issue. First, you can wrap the

RubyGems-specific code in a block and use Ruby’s exception handling to rescue the

resultant LoadError should RubyGems not be found during the require.

begin

require 'rubygems'

require_gem 'BlueCloth', ">= 0.0.4"

rescue LoadError

require 'bluecloth'

end

This code first tries to require in the RubyGems library. If this fails, the rescue stanza

is invoked, and your program will try to load BlueCloth using a conventional require.

This latter require will fail if BlueCloth isn’t installed, which is the same behavior users

see now if they’re not using RubyGems.

As of RubyGems 0.8.0, requiring rubygems.rb will install an overloaded version of

Ruby’s require method. Having loaded the RubyGems framework, you could say

require 'bluecloth'

Although this looks like conventional code, behind the scenes RubyGems will load

bluecloth.rb from the first match it finds in its list of currently installed gems.

The overloaded require method almost allows you to free your applications from any

RubyGems-specific code. The one exception is that the RubyGems library must be

loaded before any calls to require gem-installed libraries.

To avoid RubyGems dependencies, the Ruby interpreter can be called with the -r switch

ruby ­rubygems myprogram.rb

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 211

This will cause the interpreter to load the RubyGems framework, thereby installing

RubyGems’ overloaded version of the require method. To globally cause RubyGems

to load with each invocation of the Ruby interpreter on a given system, you can set the

RUBYOPT environment variable

% export RUBYOPT=rubygems

You can then run the ruby interpreter without explicitly loading the RubyGems frame-

work, and gem-installed libraries will be available to the applications that need them.

The biggest disadvantage of using the overloaded require method is that you lose the

ability to manage multiple installed versions of the same library. If you need a specific

version of a library, it’s better to use the LoadError method described previously.

Creating Your Own Gems
By now, you’ve seen how easy RubyGems makes things for the users of an applica-

tion or library and are probably ready to make a gem of your own. If you’re creating

code to be shared with the open-source community, RubyGems are an ideal way for

end-users to discover, install, and uninstall your code. They also provide a powerful

way to manage internal, company projects, or even personal projects, since they make

upgrades and rollbacks so simple. Ultimately, the availability of more gems makes the

Ruby community stronger. These gems have to come from somewhere; we’re going to

show you how they can start coming from you.

Let’s say you’ve finally gotten your mother’s online diary application, MomLog, fin-

ished, and you have decided to release it under an open-source license. After all, other

programmers have mothers, too. Naturally, you want to release MomLog as a gem

(moms love it when you give them gems).

Package Layout

The first task in creating a gem is organizing your code into a directory structure that

makes sense. The same rules that you would use in creating a typical tar or zip archive

apply in package organization. Some general conventions follow.

• Put all of your Ruby source files under a subdirectory called lib/. Later, we’ll

show you how to ensure that this directory will be added to Ruby’s $LOAD_PATH

when users load this gem.

• If it’s appropriate for your project, include a file under lib/yourproject.rb that

performs the necessary require commands to load the bulk of the project’s func-

tionality. Before RubyGems’ autorequire feature, this made things easier for others

to use a library. Even with RubyGems, it makes it easier for others to explore your

code if you give them an obvious starting point.

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 212

• Always include a README file including a project summary, author contact infor-

mation, and pointers for getting started. Use RDoc format for this file so you

can add it to the documentation that will be generated during gem installation.

Remember to include a copyright and license in the README file, as many com-

mercial users won’t use a package unless the license terms are clear.

• Tests should go in a directory called test/. Many developers use a library’s unit

tests as a usage guide. It’s nice to put them somewhere predictable, making them

easy for others to find.

• Any executable scripts should go in a subdirectory called bin/.

• Source code for Ruby extensions should go in ext/.

• If you’ve got a great deal of documentation to include with your gem, it’s good to

keep it in its own subdirectory called docs/. If your README file is in the top level

of your package, be sure to refer readers to this location.

This directory layout is illustrated in Figure 17.1 on page 220.

The Gem Specification

Now that you’ve got your files laid out as you want them, it’s time to get to the heart of

gem creation: the gem specification, or gemspec. A gemspec is a collection of metadata

in Ruby or YAML (see page 737) that provides key information about your gem. The

gemspec is used as input to the gem-building process. You can use several different

mechanisms to create a gem, but they’re all conceptually the same. Here’s your first,

basic MomLog gem.

require 'rubygems'

SPEC = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "1.0.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online Diary for families"

candidates = Dir.glob("{bin,docs,lib,test}/**/*")

s.files = candidates.delete_if do |item|

item.include?("CVS") || item.include?("rdoc")

end

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "test/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README"]

s.add_dependency("BlueCloth", ">= 0.0.4")

end

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 213

Let’s quickly walk through this example. A gem’s metadata is held in an object of class

Gem::Specification. The gemspec can be expressed in either YAML or Ruby code.

Here we’ll show the Ruby version, as it’s generally easier to construct and more flexible

in use. The first five attributes in the specification give basic information such as the

gem’s name, the version, and the author’s name, e-mail, and home page.

In this example, the next attribute is the platform on which this gem can run. In this

case, the gem is a pure Ruby library with no operating system–specific requirements, so

we’ve set the platform to RUBY. If this gem were written for Windows only, for example,

the platform would be listed as WIN32. For now, this field is only informational, but in

the future it will be used by the gem system for intelligent selection of precompiled

native extension gems.

The gem’s summary is the short description that will appear when you run a gem query

(as in our previous BlueCloth example).

The files attribute is an array of pathnames to files that will be included when the

gem is built. In this example, we’ve used Dir.glob to generate the list and filtered out

CVS and RDoc files.

Runtime Magic

The next two attributes, require_path and autorequire, let you specify the directo-

ries that will be added to the $LOAD_PATH when require_gem loads the gem, as well as

any files that will automatically be loaded using require. In this example, lib refers

to a relative path under the MomLog gem directory, and the autorequire will cause

lib/momlog.rb to be required when require_gem "MomLog" is called. RubyGems

also provides require_paths, a plural version of require_path. This takes an array,

allowing you to specify a number of directories to include in $LOAD_PATH.

Adding Tests and Documentation

The test_file attribute holds the relative pathname to a single Ruby file included

in the gem that should be loaded as a Test::Unit test suite. (You can use the plural

form, test_files, to reference an array of files containing tests.) For details on how

to create a test suite, see Chapter 12 on page 143 on unit testing.

Finishing up this example, we have two attributes controlling the production of local

documentation of the gem. The has_rdoc attribute specifies that you have added RDoc

comments to your code. It’s possible to run RDoc on totally uncommented code, pro-

viding a browsable view of its interfaces, but obviously this is a lot less valuable than

running RDoc on well-commented code. has_rdoc is a way for you to tell the world,

“Yes. It’s worth generating the documentation for this gem.”

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 214

RDoc has the convenience of being very readable in both source and rendered form,

making it an excellent choice for an included README file with a package. The rdoc

command normally runs only on source code files. The extra_rdoc_files attribute

takes an array of paths to non-source files in your gem that you would like to be

included in the generation of RDoc documentation.

Adding Dependencies

For your gem to work properly, users are going to need to have BlueCloth installed.

We saw earlier how to set a load-time version dependency for a library. Now we need

to tell our gemspec about that dependency, so the installer will ensure that it is present

while installing MomLog. We do that with the addition of a single method call to our

Gem::Specification object.

s.add_dependency("BlueCloth", ">= 0.0.4")

The arguments to our add_dependency method are identical to those of require_gem,

which we explained earlier.

After generating this gem, attempting to install it on a clean system would look some-

thing like this.

% gem install pkg/MomLog­1.0.0.gem

Attempting local installation of 'pkg/MomLog­1.0.0.gem'

/usr/local/lib/ruby/site_ruby/1.8/rubygems.rb:50:in `require_gem':

(LoadError)

Could not find RubyGem BlueCloth (>= 0.0.4)

Because you are performing a local installation from a file, RubyGems won’t attempt to

resolve the dependency for you. Instead, it fails noisily, telling you that it needs Blue-

Cloth to complete the installation. You could then install BlueCloth as we did before,

and things would go smoothly the next time you attempted to install the MomLog gem.

If you had uploaded MomLog to the central RubyGems repository and then tried to

install it on a clean system, you would be prompted to automatically install BlueCloth

as part of the MomLog installation.

% gem install ­r MomLog

Attempting remote installation of 'MomLog'

Install required dependency BlueCloth? [Yn] y

Successfully installed MomLog, version 1.0.0

Now you’ve got both BlueCloth and MomLog installed, and your mother can start

happily publishing her diary. Had you chosen not to install BlueCloth, the installation

would have failed as it did during the local installation attempt.

As you add more features to MomLog, you may find yourself pulling in additional

external gems to support those features. The add_dependency method can be called

multiple times in a single gemspec, supporting as many dependencies as you need it to

support.

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 215

Ruby Extension Gems

So far, all of the examples we’ve looked at have been pure Ruby code. However, many

Ruby libraries are created as native extensions (see Chapter 21 on page 261). You have

two ways to package and distribute this kind of library as a gem. You can distribute the

gem in source format and have the installer compile the code at installation time. Alter-

natively, you can precompile the extensions and distribute one gem for each separate

platform you want to support.

For source gems, RubyGems provides an additional Gem::Specification attribute

called extensions. This attribute is an array of paths to Ruby files that will generate

Makefiles. The most typical way to create one of these programs is to use Ruby’s mkmf

library (see Chapter 21 on page 261 and the appendix about mkmf on page 755). These

files are conventionally named extconf.rb, though any name will do.

Your mom has a computerized recipe database that is near and dear to her heart. She

has been storing her recipes in it for years, and you would like to give her the ability

to publish these recipes on the Web for her friends and family. You discover that the

recipe program, MenuBuilder, has a fairly nice native API and decide to write a Ruby

extension to wrap it. Since the extension may be useful to others who aren’t necessarily

using MomLog, you decide to package it as a separate gem and add it as an additional

dependency for MomLog.

Here’s the gemspec.

require 'rubygems'

spec = Gem::Specification.new do |s|

s.name = "MenuBuilder"

s.version = "1.0.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/projects/MenuBuilder"

s.platform = Gem::Platform::RUBY

s.summary = "A Ruby wrapper for the MenuBuilder recipe database."

s.files = ["ext/main.c", "ext/extconf.rb"]

s.require_path = "."

s.autorequire = "MenuBuilder"

s.extensions = ["ext/extconf.rb"]

end

if $0 == __FILE__

Gem::manage_gems

Gem::Builder.new(spec).build

end

Note that you have to include source files in the specification’s files list so they’ll be

included in the gem package for distribution.

When a source gem is installed, RubyGems runs each of its extensions programs and

then executes the resultant Makefile.

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 216

% gem install MenuBuilder­1.0.0.gem

Attempting local installation of 'MenuBuilder­1.0.0.gem'

ruby extconf.rb inst MenuBuilder­1.0.0.gem

creating Makefile

make

gcc ­fPIC ­g ­O2 ­I. ­I/usr/local/lib/ruby/1.8/i686­linux \

­I/usr/local/lib/ruby/1.8/i686­linux ­I. ­c main.c

gcc ­shared ­L"/usr/local/lib" ­o MenuBuilder.so main.o \

­ldl ­lcrypt ­lm ­lc

make install

install ­c ­p ­m 0755 MenuBuilder.so \

/usr/local/lib/ruby/gems/1.8/gems/MenuBuilder­1.0.0/.

Successfully installed MenuBuilder, version 1.0.0

RubyGems does not have the capability to detect system library dependencies that

source gems may have. Should your source gems depend on a system library that is

not installed, the gem installation will fail, and any error output from the make com-

mand will be displayed.

Distributing source gems obviously requires that the consumer of the gem have a work-

ing set of development tools. At a minimum, they’ll need some kind of make program

and a compiler. Particularly for Windows users, these tools may not be present. You

can get around this limitation by distributing precompiled gems.

Creation of precompiled gems is simple—add the compiled shared object files (DLLs

on Windows) to the gemspec’s files list, and make sure these files are in one of the

gem’s require_path attributes. As with pure Ruby gems, the require_gem command

will modify Ruby’s $LOAD_PATH, and the shared object will be accessible via require.

Since these gems will be platform specific, you can also use the platform attribute

(remember this from the first gemspec example?) to specify the target platform for

the gem. The Gem::Specification class defines constants for Windows, Intel Linux,

Macintosh, and pure Ruby. For platforms not included in this list, you can use the value

of the RUBY_PLATFORM variable. This attribute is purely informational for now, but it’s

a good habit to acquire. Future RubyGems releases will use the platform attribute to

intelligently select precompiled gems for the platform on which the installer is running.

Building the Gem File

The MomLog gemspec we just created is runnable as a Ruby program. Invoking it will

create a gem file, MomLog­0.5.0.gem.

% ruby momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog­0.5.0.gem

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 217

Alternatively, you can use the gem build command to generate the gem file.

% gem build momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog­0.5.0.gem

Now that you’ve got a gem file, you can distribute it like any other package. You can

put it on an FTP server or a Web site for download or e-mail it to your friends. Once

your friends have got this file on their local computers (downloading from your FTP

server if necessary), they can install the gem (assuming they have RubyGems installed

too) by calling

% gem install MomLog­0.5.0.gem

Attempting local installation of 'MomLog­0.5.0.gem'

Successfully installed MomLog, version 0.5.0

If you would like to release your gem to the Ruby community, the easiest way is to use

RubyForge (http://rubyforge.org). RubyForge is an open-source project manage-

ment Web site. It also hosts the central gem repository. Any gem files released using

RubyForge’s file release feature will be automatically picked up and added to the cen-

tral gem repository several times each day. The advantage to potential users of your

software is that it will be available via RubyGems’ remote query and installation oper-

ations, making installation even easier.

Building with Rake

Last but certainly not least, we can use Rake to build gems (remember Rake, the pure-

Ruby build tool we mentioned back on page 204). Rake uses a command file called a

Rakefile to control the build. This defines (in Ruby syntax!) a set of rules and tasks.

The intersection of make’s rule-driven concepts and Ruby’s power make for a build and

release automator’s dream environment. And, what release of a Ruby project would be

complete without the generation of a gem?

For details on how to use Rake, see http://rake.rubyforge.org. Its documents are

comprehensive and always up-to-date. Here, we’ll focus on just enough Rake to build

a gem. From the Rake documentation:

Tasks are the main unit of work in a Rakefile. Tasks have a name (usually given as

a symbol or a string), a list of prerequisites (more symbols or strings), and a list of

actions (given as a block).

Normally, you can use Rake’s built-in task method to define your own named tasks

in your Rakefile. For special cases, it makes sense to provide helper code to automate

some of the repetitive work you would have to do otherwise. Gem creation is one of

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 218

these special cases. Rake comes with a special TaskLib, called GemPackageTask, that

helps integrate gem creation into the rest of your automated build and release process.

To use GemPackageTask in your Rakefile, create the gemspec exactly as we did pre-

viously, but this time place it into your Rakefile. We then feed this specification to

GemPackageTask.

require 'rubygems'

Gem::manage_gems

require 'rake/gempackagetask'

spec = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "0.5.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online Diary for families"

s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README"]

s.add_dependency("BlueCloth", ">= 0.0.4")

s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Rake::GemPackageTask.new(spec) do |pkg|

pkg.need_tar = true

end

Note that you’ll have to require the rubygems package into your Rakefile. You’ll also

notice that we’ve used Rake’s FileList class instead of Dir.glob to build the list

of files. FileList is smarter than Dir.glob for this purpose in that it automatically

ignores commonly unused files (such as the CVS directory that the CVS version control

tool leaves lying around).

Internally, the GemPackageTask generates a Rake target with the identifier

package_directory/gemname­gemversion.gem

In our case, this identifier will be pkg/MomLog­0.5.0.gem. You can invoke this task

from the same directory where you’ve put the Rakefile.

% rake pkg/MomLog­0.5.0.gem

(in /home/chad/download/gembook/code/MomLog)

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog­0.5.0.gem

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 219

Now that you’ve got a task, you can use it like any other Rake task, adding dependencies

to it or adding it to the dependency list of another task, such as deployment or release

packaging.

Maintaining Your Gem

(and One Last Look at MomLog)

You’ve released MomLog, and it’s attracting new, adoring users every week. You have

taken great care to package it cleanly and are using Rake to build your gem.

Your gem being “in the wild” with your contact information attached to it, you know

that it’s only a matter of time before you start receiving feature requests (and fan mail!)

from your users. But, your first request comes via a phone call from none other than

dear old Mom. She has just gotten back from a vacation in Florida and asks you how

she can include her vacation pictures in her diary. You don’t think an explanation of

command-line FTP would be time well spent, and being the ever-devoted son or daugh-

ter, you spend your evening coding a nice photo album module for MomLog.

Since you have added functionality to the application (as opposed to just fixing a bug),

you decide to increase MomLog’s version number from 1.0.0 to 1.1.0. You also add

a set of tests for the new functionality and a document about how to set up the photo

upload functionality.

Figure 17.1 on the following page shows the complete directory structure of your final

MomLog 1.1.0 package. The final gem specification (extracted from the Rakefile) looks

like this.

spec = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "1.1.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online diary, recipe publisher, " +

"and photo album for families."

s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README", "docs/DatabaseConfiguration.rdoc",

"docs/Installing.rdoc", "docs/PhotoAlbumSetup.rdoc"]

s.add_dependency("BlueCloth", ">= 0.0.4")

s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 220

Figure 17.1. MomLog package structure

momlog/

README

Rakefile

bin/

momlog_server

docs/

Installing.rdoc

DatabaseConfiguration.rdoc

PhotoAlbumSetup.rdoc

lib/

momlog.rb

momlog/

diary.rb

recipes.rb

db.rb

upload.rb

photo_album.rb

rss.rb

tests/

ts_momlog.rb

tc_recipe.rb

tc_photo_album.rb

tc_upload.rb

tc_diary.rb

tc_rss.rb

You run Rake over your Rakefile, generating the updated MomLog gem, and you’re

ready to release the new version. You log into your RubyForge account, and upload

your gem to the “Files” section of your project. While you wait for RubyGems’ auto-

mated process to release the gem into the central gem repository, you type a release

announcement to post to your RubyForge project.

Within about an hour, you log in to your mother’s Web server to install the new software

for her. RubyGems makes things easy, but we have to take special care of Mom.

% gem query ­rn MomLog

*** REMOTE GEMS ***

MomLog (1.1.0, 1.0.0)

An online diary, recipe publisher, and photo album for families.

Prepared exclusively for Dr. Eugene Wallingford

CREATING YOUR OWN GEMS 221

Great! The query indicates that there are two versions of MomLog available now. You

type the install command without specifying a version argument, because you know

that the default is to install the most recent version.

% gem install ­r MomLog

Attempting remote installation of 'MomLog'

Successfully installed MomLog, version 1.1.0

You haven’t changed any of the dependencies for MomLog, so your existing BlueCloth

and MenuBuilder installations meet the requirements for MomLog 1.1.0.

Now that Mom’s happy, it’s time to go try some of her recently posted recipes.

Prepared exclusively for Dr. Eugene Wallingford

This documentation displayed by ri is extracted from specially formatted comments in
Ruby source code. See §2.1.1.2 for details.

1.2.5 Ruby Package Management with gem
Ruby’s package management system is known as RubyGems, and packages or modules
distributed using RubyGems are called “gems.” RubyGems makes it easy to install Ruby
software and can automatically manage complex dependencies between packages.

The frontend script for RubyGems is gem, and it’s distributed with Ruby 1.9 just as
irb and ri are. In Ruby 1.8, you must install it separately—see http://rubygems.org. Once
the gem program is installed, you might use it like this:

gem install rails
Successfully installed activesupport-1.4.4
Successfully installed activerecord-1.15.5
Successfully installed actionpack-1.13.5
Successfully installed actionmailer-1.3.5
Successfully installed actionwebservice-1.2.5
Successfully installed rails-1.2.5
6 gems installed
Installing ri documentation for activesupport-1.4.4...
Installing ri documentation for activerecord-1.15.5...
...etc...

As you can see, the gem install command installs the most recent version of the gem
you request and also installs any gems that the requested gem requires. gem has other
useful subcommands as well. Some examples:

gem list # List installed gems
gem enviroment # Display RubyGems configuration information
gem update rails # Update a named gem
gem update # Update all installed gems
gem update --system # Update RubyGems itself
gem uninstall rails # Remove an installed gem

In Ruby 1.8, the gems you install cannot be automatically loaded by Ruby’s require
method. (See §7.6 for more about loading modules of Ruby code with the require
method.) If you’re writing a program that will be using modules installed as gems, you
must first require the rubygems module. Some Ruby 1.8 distributions are preconfigured
with the RubyGems library, but you may need to download and install this manually.
Loading this rubygems module alters the require method itself so that it searches the
set of installed gems before it searches the standard library. You can also automatically
enable RubyGems support by running Ruby with the -rubygems command-line option.
And if you add -rubygems to the RUBYOPT environment variable, then the RubyGems
library will be loaded on every invocation of Ruby.

The rubygems module is part of the standard library in Ruby 1.9, but it is no longer
required to load gems. Ruby 1.9 knows how to find installed gems on its own, and you
do not have to put require 'rubygems' in your programs that use gems.

14 | Chapter 1: Introduction

When you load a gem with require (in either 1.8 or 1.9), it loads the most recent
installed version of the gem you specify. If you have more specific version requirements,
you can use the gem method before calling require. This finds a version of the gem
matching the version constraints you specify and “activates” it, so that a subsequent
require will load that version:

require 'rubygems' # Not necessary in Ruby 1.9
gem 'RedCloth', '> 2.0', '< 4.0' # Activate RedCloth version 2.x or 3.x
require 'RedCloth' # And now load it

You’ll find more about require and gems in §7.6.1. Complete coverage of RubyGems,
the gem program, and the rubygems module are beyond the scope of this book. The
gem command is self-documenting—start by running gem help. For details on the gem
method, try ri gem. And for complete details, see the documentation at http://ruby
gems.org.

1.2.6 More Ruby Tutorials
This chapter began with a tutorial introduction to the Ruby language. You can try out
the code snippets of that tutorial using irb. If you want more tutorials before diving
into the language more formally, there are two good ones available by following links
on the http://www.ruby-lang.org home page. One irb-based tutorial is called “Ruby in
Twenty Minutes.”* Another tutorial, called “Try Ruby!”, is interesting because it works
in your web browser and does not require you to have Ruby or irb installed on your
system.†

1.2.7 Ruby Resources
The Ruby web site (http://www.ruby-lang.org) is the place to find links to other Ruby
resources, such as online documentation, libraries, mailing lists, blogs, IRC channels,
user groups, and conferences. Try the “Documentation,” “Libraries,” and
“Community” links on the home page.

1.3 About This Book
As its title implies, this book covers the Ruby programming language and aspires to do
so comprehensively and accessibly. This edition of the book covers language versions
1.8 and 1.9. Ruby blurs the distinction between language and platform, and so our
coverage of the language includes a detailed overview of the core Ruby API. But this
book is not an API reference and does not cover the core classes comprehensively. Also,

* At the time of this writing, the direct URL for this tutorial is http://www.ruby-lang.org/en/documentation/
quickstart/.

† If you can’t find the “Try Ruby!” link on the Ruby home page, try this URL: http://tryruby.hobix.com.

1.3 About This Book | 15

Chapter 18

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP

daemon, or Web server in Ruby, but you can also use Ruby for more usual tasks such

as CGI programming or as a replacement for PHP.

Many options are available for using Ruby to implement Web applications, and a single

chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and

point you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Inter-

face (CGI) programs.

Writing CGI Scripts
You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate

HTML output, all you need is something like

#!/usr/bin/ruby

print "Content­type: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it

via your browser. (If your Web server doesn’t automatically add headers, you’ll need

to add the response header yourself.)

#!/usr/bin/ruby

print "HTTP/1.0 200 OK\r\n"

print "Content­type: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own

request parsing, session management, cookie manipulation, output escaping, and so

on. Fortunately, options are available to make this easier.

222Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 223

Using cgi.rb

Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,

cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large

class, but we’ll take a quick look at its capabilities here.

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain char-

acters. For instance, a slash character (/) has special meaning in a URL, so it must

be “escaped” if it’s not part of the pathname. That is, any / in the query portion of the

URL will be translated to the string %2F and must be translated back to a / for you to

use it. Space and ampersand are also special characters. To handle this, CGI provides

the routines CGI.escape and CGI.unescape.

require 'cgi'

puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters.

require 'cgi'

puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a

string.

require 'cgi'

puts CGI.escapeElement('<hr>Click Here
','A')

produces:

<hr>Click Here

Here only the A element is escaped; other elements are left alone. Each of these methods

has an “un-” version to restore the original string.

require 'cgi'

puts CGI.unescapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 224

Query Parameters

HTTP requests from the browser to your application may contain parameters, either

passed as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name

may be returned multiple times in the same request. For example, say we’re writing a

survey to find out why folks like Ruby. The HTML for our form looks like this.

<html>

<head><title>Test Form</title></head>

<body>

I like Ruby because:

<form target="cgi­bin/survey.rb">

<input type="checkbox" name="reason" value="flexible" />

It's flexible

<input type="checkbox" name="reason" value="transparent" />

It's transparent

<input type="checkbox" name="reason" value="perlish" />

It's like Perl

<input type="checkbox" name="reason" value="fun" />

It's fun

<p>

Your name: <input type="text" name="name">

</p>

<input type="submit"/>

</form>

</body>

</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as

shown in Figure 18.1 on the next page). In this case, the form data corresponding to the

name reason will have three values, corresponding to the three checked boxes.

Class CGI gives you access to form data in a couple of ways. First, we can just treat the

CGI object as a hash, indexing it with field names and getting back field values.

require 'cgi'

cgi = CGI.new

cgi['name'] → "Dave Thomas"

cgi['reason'] → "flexible"

However, this doesn’t work well with the reason field: we see only one of the three

values.1.8 We can ask to see them all by using the CGI#params method. The value returned

by params acts like a hash containing the request parameters. You can both read and

write this hash (the latter allows you to modify the data associated with a request). Note

that each of the values in the hash is actually an array.

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 225

Figure 18.1. Sample CGI Form

require 'cgi'

cgi = CGI.new

cgi.params → {"name"=>["Dave Thomas"],

"reason"=>["flexible", "transparent",

"fun"]}

cgi.params['name'] → ["Dave Thomas"]

cgi.params['reason'] → ["flexible", "transparent", "fun"]

cgi.params['name'] = [cgi['name'].upcase]

cgi.params → {"name"=>["DAVE THOMAS"],

"reason"=>["flexible", "transparent",

"fun"]}

You can determine if a particular parameter is present in a request using CGI#has_key?.

require 'cgi'

cgi = CGI.new

cgi.has_key?('name') → true

cgi.has_key?('age') → false

Generating HTML

CGI contains a huge number of methods that can be used to create HTML—one method

per element. To enable these methods, you must create a CGI object by calling CGI.new,

passing in the required level of HTML. In these examples, we’ll use html3.

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 226

To make element nesting easier, these methods take their content as code blocks. The

code blocks should return a String, which will be used as the content for the element.

For this example, we’ve added some gratuitous newlines to make the output fit on the

page.

require 'cgi'

cgi = CGI.new("html3") # add HTML generation methods

cgi.out {

cgi.html {

cgi.head { "\n"+cgi.title{"This Is a Test"} } +

cgi.body { "\n"+

cgi.form {"\n"+

cgi.hr +

cgi.h1 { "A Form: " } + "\n"+

cgi.textarea("get_text") +"\n"+

cgi.br +

cgi.submit

}

}

}

}

produces:

Content­Type: text/html

Content­Length: 302

<!DOCTYPE HTML PUBLIC "­//W3C//DTD HTML 3.2 Final//EN"><HTML><HEAD>

<TITLE>This Is a Test</TITLE></HEAD><BODY>

<FORM METHOD="post" ENCTYPE="application/x­www­form­urlencoded">

<HR><H1>A Form: </H1>

<TEXTAREA NAME="get_text" ROWS="10" COLS="70"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

This code will produce an HTML form titled “This Is a Test,” followed by a horizontal

rule, a level-one header, a text input area, and finally a submit button. When the submit

comes back, you’ll have a CGI parameter named get_text containing the text the user

entered.

Although quite interesting, this method of generating HTML is fairly laborious and

probably isn’t used much in practice. Most people seem to write the HTML directly,

use a templating system, or use an application framework, such as Iowa. Unfortunately,

we don’t have space here to discuss Iowa—have a look at the online documentation at

http://enigo.com/projects/iowa, or look at Chapter 6 of The Ruby Developer’s

Guide [FJN02]—but we can look at templating.

Templating Systems

Templating systems let you separate the presentation and logic of your application.

It seems that just about everyone who writes a Web application using Ruby at some

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 227

point also writes a templating system: the RubyGarden wiki lists quite a few,1 and even

this list isn’t complete. For now, let’s just look at three: RDoc templates, Amrita, and

erb/eruby.

RDoc Templates

The RDoc documentation system (described in Chapter 16 on page 187) includes a

very simple templating system that it uses to generate all its XML and HTML output.

Because RDoc is distributed as part of standard Ruby, the templating system is available

wherever Ruby 1.8.2 or later is installed. However, the templating system does not use

conventional HTML or XML markup (as it is intended to be used to generate output in

many different formats), so files marked up with RDoc templates may not be easy to

edit using conventional HTML editing tools.

require 'rdoc/template'

HTML = %{Hello, %name%.

<p>

The reasons you gave were:

START:reasons

%reason_name% (%rank%)

END:reasons

}

data = {

'name' => 'Dave Thomas',

'reasons' => [

{ 'reason_name' => 'flexible', 'rank' => '87' },

{ 'reason_name' => 'transparent', 'rank' => '76' },

{ 'reason_name' => 'fun', 'rank' => '94' },

]

}

t = TemplatePage.new(HTML)

t.write_html_on(STDOUT, data)

produces:

Hello, Dave Thomas.

<p>

The reasons you gave were:

flexible (87)

transparent (76)

fun (94)

1. http://www.rubygarden.org/ruby?HtmlTemplates

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 228

The constructor is passed a string containing the template to be used. The method

write_html_on is then passed a hash containing names and values. If the template

contains the sequence %xxxx%, the hash is consulted, and the value corresponding to

the name xxx is substituted in. If the template contains START:yyy, the hash value

corresponding to yyy is assumed to be an array of hashes. The template lines between

START:yyy and END:yyy are repeated for each element in that array. The templates also

support conditions: lines between IF:zzz and ENDIF:zzz are included in the output

only if the hash has a key zzz.

Amrita

Amrita2 is a library that generates HTML documents from a template that is itself valid

HTML. This makes Amrita easy to use with existing HTML editors. It also means that

Amrita templates display correctly as freestanding HTML pages.

Amrita uses the id tags in HTML elements to determine the values to be substituted.

If the value corresponding to a given name is nil or false, the HTML element won’t

be included in the resulting output. If the value is an array, it iterates the corresponding

HTML element.

require 'amrita/template'

include Amrita

HTML = %{<p id="greeting" />

<p>The reasons you gave were:</p>

<li id="reasons">,

}

data = {

:greeting => 'Hello, Dave Thomas',

:reasons => [

{ :reason_name => 'flexible', :rank => '87' },

{ :reason_name => 'transparent', :rank => '76' },

{ :reason_name => 'fun', :rank => '94' },

]

}

t = TemplateText.new(HTML)

t.prettyprint = true

t.expand(STDOUT, data)

produces:

<p>Hello, Dave Thomas</p>

<p>The reasons you gave were:</p>

2. http://www.brain­tokyo.jp/research/amrita/rdocs/

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 229

flexible, 87

transparent, 76

fun, 94

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem

inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in some other sort of a

document, especially in an HTML page. Generically, this is known as “eRuby.” Specif-

ically, several different implementations of eRuby exist, including eruby and erb.

eruby, written by Shugo Maeda, is available for download from the Ruby Applica-

tion Archive. erb, its little cousin, is written in pure Ruby and is included with the

standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equiv-

alent of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is normally used as a filter. Text within the input file is passed through untouched,

with the following exceptions

Expression Description

<% ruby code %> Execute the Ruby code between the delimiters.

<%= ruby expression %> Evaluate the Ruby expression, and replace the sequence

with the expression’s value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for

testing).

% line of ruby code A line that starts with a percent is assumed to contain just

Ruby code.

You invoke erb as

erb [options] [document]

If the document is omitted, eruby will read from standard input. The command-line

options for erb are shown in Table 18.1 on the next page.

Let’s look at some simple examples. We’ll run the erb executable on the following

input.

% a = 99

<%= a %> bottles of beer...

Prepared exclusively for Dr. Eugene Wallingford

WRITING CGI SCRIPTS 230

Table 18.1. Command-line options for erb

Option Description

­d Sets $DEBUG to true.

­Kkcode Specifies an alternate encoding system (see page 169).

­n Display resulting Ruby script (with line numbers).

­r library Loads the named library.

­P Doesn’t do erb processing on lines starting %.

­S level Sets the safe level.

­T mode Sets the trim mode.

­v Enables verbose mode.

­x Displays resulting Ruby script.

The line starting with the percent sign simply executes the given Ruby statement. The

next line contains the sequence <%= a %>, which substitutes in the value of a.

erb f1.erb

produces:

99 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You

can see the Ruby that erb generates using the ­n or ­x option.

erb ­x f1.erb

produces:

_erbout = ''; a = 99

_erbout.concat((a).to_s); _erbout.concat " bottles of beer...\n"

_erbout

Notice how erb builds a string, _erbout, containing both the static strings from the

template and the results of executing expressions (in this case the value of a).

Of course, you can embed Ruby within a more complex document type, such as HTML.

Figure 18.2 on page 232 shows a couple of loops in an HTML document.

Installing eruby in Apache

If you want to use erb-like page generation for a Web site that gets a reasonable amount

of traffic, you’ll probably want to switch across to using eruby, which has better per-

formance. You can then configure the Apache Web server to automatically parse Ruby-

embedded documents using eRuby, much in the same way that PHP does. You create

Ruby-embedded files with an .rhtml suffix and configure the Web server to run the

eruby executable on these documents to produce the desired HTML output.

Prepared exclusively for Dr. Eugene Wallingford

COOKIES 231

To use eruby with the Apache Web server, you need to perform the following steps.

1. Copy the eruby binary to the cgi­bin directory.

2. Add the following two lines to httpd.conf.

AddType application/x­httpd­eruby .rhtml

Action application/x­httpd­eruby /cgi­bin/eruby

3. If desired, you can also add or replace the DirectoryIndex directive such that

it includes index.rhtml. This lets you use Ruby to create directory listings for

directories that do not contain an index.html. For instance, the following direc-

tive would cause the embedded Ruby script index.rhtml to be searched for and

served if neither index.html nor index.shtml existed in a directory.

DirectoryIndex index.html index.shtml index.rhtml

Of course, you could also simply use a sitewide Ruby script as well.

DirectoryIndex index.html index.shtml /cgi­bin/index.rb

Cookies
Cookies are a way of letting Web applications store their state on the user’s machine.

Frowned upon by some, cookies are still a convenient (if unreliable) way of remember-

ing session information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access

the cookies associated with the current request using the CGI#cookies method, and you

can set cookies back into the browser by setting the cookies parameter of CGI#out to

reference either a single cookie or an array of cookies.

#!/usr/bin/ruby

COOKIE_NAME = 'chocolate chip'

require 'cgi'

cgi = CGI.new

values = cgi.cookies[COOKIE_NAME]

if values.empty?

msg = "It looks as if you haven't visited recently"

else

msg = "You last visited #{values[0]}"

end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)

cookie.expires = Time.now + 30*24*3600 # 30 days

cgi.out("cookie" => cookie) { msg }

Prepared exclusively for Dr. Eugene Wallingford

COOKIES 232

Figure 18.2. Erb processing a file with loops

<!DOCTYPE HTML PUBLIC "­//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>eruby example</title>

</head>

<body>

<h1>Enumeration</h1>

%5.times do |i|

number <%=i%>

%end

<h1>"Environment variables starting with "T"</h1>

<table>

%ENV.keys.grep(/^T/).each do |key|

<tr><td><%=key%></td><td><%=ENV[key]%></td></tr>

%end

</table>

</body>

</html>

produces:

<!DOCTYPE HTML PUBLIC "­//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>eruby example</title>

</head>

<body>

<h1>Enumeration</h1>

number 0

number 1

number 2

number 3

number 4

<h1>"Environment variables starting with "T"</h1>

<table>

<tr><td>TERM_PROGRAM</td><td>Apple_Terminal</td></tr>

<tr><td>TERM</td><td>xterm­color</td></tr>

<tr><td>TERM_PROGRAM_VERSION</td><td>133</td></tr>

<tr><td>TYPE</td><td>SCREEN</td></tr>

</table>

</body>

</html>

Prepared exclusively for Dr. Eugene Wallingford

COOKIES 233

Sessions

Cookies by themselves still need a bit of work to be useful. We really want session:

information that persists between requests from a particular Web browser. Sessions

are handled by class CGI::Session, which uses cookies but provides a higher-level

abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with

keys. Unlike cookies, sessions store the majority of their data on the server, using the

browser-resident cookie simply as a way of uniquely identifying the server-side data.

Sessions also give you a choice of storage techniques for this data: it can be held in

regular files, in a PStore (see the description on page 698), in memory, or even in your

own customized store.

Sessions should be closed after use, as this ensures that their data is written out to the

store. When you’ve permanently finished with a session, you should delete it.

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",

"prefix" => "web­session."

)

if sess['lastaccess']

msg = "You were last here #{sess['lastaccess']}."

else

msg = "Looks like you haven't been here for a while"

end

count = (sess["accesscount"] || 0).to_i

count += 1

msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count

sess["lastaccess"] = Time.now.to_s

sess.close

cgi.out {

cgi.html {

cgi.body {

msg

}

}

}

The code in the previous example used the default storage mechanism for sessions: per-

sistent data was stored in files in your default temporary directory (see Dir.tmpdir).

The filenames will all start web­session. and will end with a hashed version1.8 of the

session number. See ri CGI::Session for more information.

Prepared exclusively for Dr. Eugene Wallingford

IMPROVING PERFORMANCE 234

Improving Performance
You can use Ruby to write CGI programs for the Web, but, as with most CGI programs,

the default configuration has to start a new copy of Ruby with every cgi-bin page access.

That’s expensive in terms of machine utilization and can be painfully slow for Web

surfers. The Apache Web server solves this problem by supporting loadable modules.

Typically, these modules are dynamically loaded and become part of the running Web

server process—you have no need to spawn another interpreter over and over again to

service requests; the Web server is the interpreter.

And so we come to mod_ruby (available from the archives), an Apache module that

links a full Ruby interpreter into the Apache Web server itself. The README file included

with mod_ruby provides details on how to compile and install it.

Once installed and configured, you can run Ruby scripts pretty much as you could

without mod_ruby, except that now they will come up much faster. You can also take

advantage of the extra facilities that mod_ruby provides (such as tight integration into

Apache’s request handling).

You have some things to watch, however. Because the interpreter remains in mem-

ory between requests, it may end up handling requests from multiple applications. It’s

possible for libraries in these applications to clash (particularly if different libraries

contain classes with the same name). You also cannot assume that the same interpreter

will handle the series of requests from one browser’s session—Apache will allocate

handler processes using its internal algorithms.

Some of these issues are resolved using the FastCGI protocol. This is an interesting

hack, available to all CGI-style programs, not just Ruby. It uses a very small proxy

program, typically running as an Apache module. When requests are received, this

proxy then forwards them to a particular long-running process that acts like a normal

CGI script. The results are fed back to the proxy, and then back to the browser. FastCGI

has the same advantages as running mod_ruby, as the interpreter is always running

in the background. It also gives you more control over how requests are allocated to

interpreters. You’ll find more information at http://www.fastcgi.com.

Choice of Web Servers
So far, we’ve been running Ruby scripts under the control of the Apache Web server.

However, Ruby 1.81.8 and later comes bundled with WEBrick, a flexible, pure-Ruby

HTTP server toolkit. Basically, it’s an extensible plug in–based framework that lets

you write servers to handle HTTP requests and responses. Here’s a basic HTTP server

that serves documents and directory indexes.

Prepared exclusively for Dr. Eugene Wallingford

CHOICE OF WEB SERVERS 235

#!/usr/bin/ruby

require 'webrick'

include WEBrick

s = HTTPServer.new(

:Port => 2000,

:DocumentRoot => File.join(Dir.pwd, "/html")

)

trap("INT") { s.shutdown }

s.start

The HTTPServer constructor creates a new Web server on port 2000. The code sets

the document root to be the html/ subdirectory of the current directory. It then uses

Kernel.trap to arrange to shut down tidily on interrupts before starting the server

running. If you point your browser at http://localhost:2000, you should see a

listing of your html subdirectory.

WEBrick can do far more than serve static content. You can use it just like a Java

servlet container. The following code mounts a simple servlet at the location /hello.

As requests arrive, the do_GET method is invoked. It uses the response object to display

the user agent information and parameters from the request.

#!/usr/bin/ruby

require 'webrick'

include WEBrick

s = HTTPServer.new(:Port => 2000)

class HelloServlet < HTTPServlet::AbstractServlet

def do_GET(req, res)

res['Content­Type'] = "text/html"

res.body = %{

<html><body>

Hello. You're calling from a #{req['User­Agent']}

<p>

I see parameters: #{req.query.keys.join(', ')}

</body></html>

}

end

end

s.mount("/hello", HelloServlet)

trap("INT"){ s.shutdown }

s.start

More information on WEBrick is available from http:///www.webrick.org. There

you’ll find links to a set of useful servlets, including one that lets you write SOAP

servers in Ruby.

Prepared exclusively for Dr. Eugene Wallingford

SOAP AND WEB SERVICES 236

SOAP and Web Services
Speaking of SOAP,1.8 Ruby now comes with an implementation of SOAP.3 This lets you

write both servers and clients using Web services. By their nature, these applications

can operate both locally and remotely across a network. SOAP applications are also

unaware of the implementation language of their network peers, so SOAP is a conve-

nient way of interconnecting Ruby applications with those written in languages such as

Java, Visual Basic, or C++.

SOAP is basically a marshaling mechanism which uses XML to send data between two

nodes in a network. It is typically used to implement remote procedure calls, RPCs,

between distributed processes. A SOAP server publishes one or more interfaces. These

interfaces are defined in terms of data types and methods that use those types. SOAP

clients then create local proxies that SOAP connects to interfaces on the server. A call

to a method on the proxy is then passed to the corresponding interface on the server.

Return values generated by the method on the server are passed back to the client via

the proxy.

Let’s start with a trivial SOAP service. We’ll write an object that does interest calcula-

tions. Initially, it offers a single method, compound, that determines compound interest

given a principal, an interest rate, the number of times interest is compounded per year,

and the number of years. For management purposes, we’ll also keep track of how many

times this method was called and make that count available via an accessor. Note that

this class is just regular Ruby code—it doesn’t know that it’s running in a SOAP envi-

ronment.

class InterestCalculator

attr_reader :call_count

def initialize

@call_count = 0

end

def compound(principal, rate, freq, years)

@call_count += 1

principal*(1.0 + rate/freq)**(freq*years)

end

end

Now we’ll make an object of this class available via a SOAP server. This will enable

client applications to call the object’s methods over the network. We’re using the stand-

alone server here, which is convenient when testing, as we can run it from the command

line. You can also run Ruby SOAP servers as CGI scripts or under mod_ruby.

3. SOAP once stood for Simple Object Access Protocol. When folks could no longer stand the irony, the

acronym was dropped, and now SOAP is just a name.

Prepared exclusively for Dr. Eugene Wallingford

SOAP AND WEB SERVICES 237

require 'soap/rpc/standaloneServer'

require 'interestcalc'

NS = 'http://pragprog.com/InterestCalc'

class Server2 < SOAP::RPC::StandaloneServer

def on_init

calc = InterestCalculator.new

add_method(calc, 'compound', 'principal', 'rate', 'freq', 'years')

add_method(calc, 'call_count')

end

end

svr = Server2.new('Calc', NS, '0.0.0.0', 12321)

trap('INT') { svr.shutdown }

svr.start

This code defines a class which implements a standalone SOAP server. When it is

initialized, the class creates a InterestCalculator object (an instance of the class

we just wrote). It then uses add_method to add the two methods implemented by this

class, compound and call_count. Finally, the code creates and runs an instance of

this server class. The parameters to the constructor are the name of the application, the

default namespace, the address of the interface to use, and the port.

We then need to write some client code to access this server. The client creates a local

proxy for the InterestCalculator service on the server, adds the methods it wants

to use, and then calls them.

require 'soap/rpc/driver'

proxy = SOAP::RPC::Driver.new("http://localhost:12321",

"http://pragprog.com/InterestCalc")

proxy.add_method('compound', 'principal', 'rate', 'freq', 'years')

proxy.add_method('call_count')

puts "Call count: #{proxy.call_count}"

puts "5 years, compound annually: #{proxy.compound(100, 0.06, 1, 5)}"

puts "5 years, compound monthly: #{proxy.compound(100, 0.06, 12, 5)}"

puts "Call count: #{proxy.call_count}"

To test this, we can run the server in one console window (the output here has been

reformated slightly to fit the width of this page).

% ruby server.rb

I, [2004­07­26T10:55:51.629451 #12327] INFO

­­ Calc: Start of Calc.

I, [2004­07­26T10:55:51.633755 #12327] INFO

­­ Calc: WEBrick 1.3.1

I, [2004­07­26T10:55:51.635146 #12327] INFO

­­ Calc: ruby 1.8.2 (2004­07­26) [powerpc­darwin]

I, [2004­07­26T10:55:51.639347 #12327] INFO

­­ Calc: WEBrick::HTTPServer#start: pid=12327 port=12321

We then run the client in another window.

Prepared exclusively for Dr. Eugene Wallingford

SOAP AND WEB SERVICES 238

% ruby client.rb

Call count: 0

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931

Call count: 2

Looking good! Flush with success, we call all our friends over and run it again.

% ruby client.rb

Call count: 2

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931

Call count: 4

Notice how the call count now starts at two the second time we run the client. The

server creates a single InterestCalculator object to service incoming requests, and

this object is reused for each request.

SOAP and Google

Obviously the real benefit of SOAP is the way it lets you interoperate with other

services on the Web. As an example, let’s write some Ruby code to send queries to

Google’s Web API.

Before sending queries to Google, you need a developer key. This is available from

Google—go to http://www.google.com/apis and follow the instructions in step 2,

Create a Google Account. After you fill in your e-mail address and supply a password,

Google will send you a developer key. In the following examples, we’ll assume that

you’ve stored this key in the file .google_key in your home directory.

Let’s start at the most basic level. Looking at the documentation for the Google API

method doGoogleSearch, we discover it has ten (!) parameters.

key The developer key

q The query string

start The index of the first required result

maxResults The maximum number of results to return per query

filter If enabled, compresses results so that similar pages and pages from the

same domain are only shown once

restrict Restricts the search to a subset of the Google Web index

safeSearch If enabled, removes possible adult content from the results

lr Restricts the search to documents in a given set of languages

ie Ignored (was input encoding)

oe Ignored (was output encoding)

We can use the add_method call to construct a SOAP proxy for the doGoogleSearch

method. The following example does just that, printing out the first entry returned if

you search Google for the term pragmatic.

Prepared exclusively for Dr. Eugene Wallingford

SOAP AND WEB SERVICES 239

require 'soap/rpc/driver'

require 'cgi'

endpoint = 'http://api.google.com/search/beta2'

namespace = 'urn:GoogleSearch'

soap = SOAP::RPC::Driver.new(endpoint, namespace)

soap.add_method('doGoogleSearch', 'key', 'q', 'start',

'maxResults', 'filter', 'restrict',

'safeSearch', 'lr', 'ie', 'oe')

query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false, '',

false, '', '', '')

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.uRL

puts CGI.unescapeHTML(first.snippet)

Run this, and you’ll see something such as the following (notice how the query term

has been highlighted by Google).

Estimated number of results is 550000.

Your query took 0.123762 seconds.

The Pragmatic Programmers, LLC

http://www.pragmaticprogrammer.com/

Home of Andrew Hunt and David Thomas's best­selling book 'The

Pragmatic Programmer'
 and The 'Pragmatic Starter Kit

(tm)' series. ... The Pragmatic Bookshelf TM. ...

However, SOAP allows for the dynamic discovery of the interface of objects on the

server. This is done using WSDL, the Web Services Description Language. A WSDL

file is an XML document that describes the types, methods, and access mechanisms for

a Web services interface. SOAP clients can read WSDL files to create the interfaces to

a server automatically.

The Web page http://api.google.com/GoogleSearch.wsdl contains the WSDL

describing the Google interface. We can alter our search application to read this WSDL,

which removes the need to add the doGoogleSearch method explicitly.

require 'soap/wsdlDriver'

require 'cgi'

WSDL_URL = "http://api.google.com/GoogleSearch.wsdl"

soap = SOAP::WSDLDriverFactory.new(WSDL_URL).create_rpc_driver

query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false,

'', false, '', '', '')

Prepared exclusively for Dr. Eugene Wallingford

MORE INFORMATION 240

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.uRL

puts CGI.unescapeHTML(first.snippet)

Finally, we can take this a step further using Ian Macdonald’s Google library (available

in the RAA). It encapsulates the Web services API behind a nice interface (nice if for no

other reason than it eliminates the need for all those extra parameters). The library also

has methods to construct the date ranges and other restrictions on a Google query and

provides interfaces to the Google cache and the spell-checking facility. The following

code is our “pragmatic” search using Ian’s library.

require 'google'

require 'cgi'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

google = Google::Search.new(key)

result = google.search('pragmatic')

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.url

puts CGI.unescapeHTML(first.snippet)

More Information
Ruby Web programming is a big topic. To dig deeper, you may want to look at Chapter

9 in The Ruby Way [Ful01], where you’ll find many examples of network and Web

programming, and Chapter 6 of The Ruby Developer’s Guide [FJN02], where you’ll

find some good examples of structuring CGI applications, along with some example

Iowa code.

If SOAP strikes you being complex, you may want to look at using XML-RPC, which

is described briefly on page 736.

A number of other Ruby Web development frameworks are available on the ’net. This

is a dynamic area: new contenders appear constantly, and it is hard for a printed book to

be definitive. However, two frameworks that are currently attracting mindshare in the

Ruby community are

• Rails (http://www.rubyonrails.org), and

• CGIKit (http://www.spice­of­life.net/cgikit/index_en.html).

Prepared exclusively for Dr. Eugene Wallingford

Chapter 19

Ruby Tk

The Ruby Application Archive contains several extensions that provide Ruby with a

graphical user interface (GUI), including extensions for Fox, GTK, and others.

The Tk extension is bundled in the main distribution and works on both Unix and

Windows systems. To use it, you need to have Tk installed on your system. Tk is a

large system, and entire books have been written about it, so we won’t waste time or

resources by delving too deeply into Tk itself but instead concentrate on how to access

Tk features from Ruby. You’ll need one of these reference books in order to use Tk with

Ruby effectively. The binding we use is closest to the Perl binding, so you probably

want to get a copy of Learning Perl/Tk [Wal99] or Perl/Tk Pocket Reference [Lid98].

Tk works along a composition model—that is, you start by creating a container (such as

a TkFrame or TkRoot) and then create the widgets (another name for GUI components)

that populate it, such as buttons or labels. When you are ready to start the GUI, you

invoke Tk.mainloop. The Tk engine then takes control of the program, displaying

widgets and calling your code in response to GUI events.

Simple Tk Application
A simple Tk application in Ruby may look something like this.

require 'tk'

root = TkRoot.new { title "Ex1" }

TkLabel.new(root) do

text 'Hello, World!'

pack('padx' => 15, 'pady' => 15, 'side' => 'left')

end

Tk.mainloop

Let’s look at the code a little more closely. After loading the tk extension module,

we create a root-level frame using TkRoot.new. We then make a TkLabel widget as a

241Prepared exclusively for Dr. Eugene Wallingford

WIDGETS 242

child of the root frame, setting several options for the label. Finally, we pack the root

frame and enter the main GUI event loop.

It’s a good habit to specify the root explicitly, but you could leave it out—along with

the extra options—and boil this down to a three-liner.

require 'tk'

TkLabel.new { text 'Hello, World!'; pack }

Tk.mainloop

That’s all there is to it! Armed with one of the Perl/Tk books we reference at the start of

this chapter, you can now produce all the sophisticated GUIs you need. But then again,

if you’d like to stick around for some more details, here they come.

Widgets
Creating widgets is easy. Take the name of the widget as given in the Tk documentation

and add a Tk to the front of it. For instance, the widgets Label, Button, and Entry

become the classes TkLabel, TkButton, and TkEntry. You create an instance of a

widget using new, just as you would any other object. If you don’t specify a parent

for a given widget, it will default to the root-level frame. We usually want to specify

the parent of a given widget, along with many other options—color, size, and so on.

We also need to be able to get information back from our widgets while our program

is running by setting up callbacks (routines invoked when certain events happen) and

sharing data.

Setting Widget Options

If you look at a Tk reference manual (the one written for Perl/Tk, for example), you’ll

notice that options for widgets are usually listed with a hyphen—as a command-line

option would be. In Perl/Tk, options are passed to a widget in a Hash. You can do that

in Ruby as well, but you can also pass options using a code block; the name of the

option is used as a method name within the block and arguments to the option appear

as arguments to the method call. Widgets take a parent as the first argument, followed

by an optional hash of options or the code block of options. Thus, the following two

forms are equivalent.

TkLabel.new(parent_widget) do

text 'Hello, World!'

pack('padx' => 5,

'pady' => 5,

'side' => 'left')

end

or

TkLabel.new(parent_widget, 'text' => 'Hello, World!').pack(...)

Prepared exclusively for Dr. Eugene Wallingford

WIDGETS 243

One small caution when using the code block form: the scope of variables is not what

you think it is. The block is actually evaluated in the context of the widget’s object, not

the caller’s. This means that the caller’s instance variables will not be available in the

block, but local variables from the enclosing scope and globals will be (not that you

use global variables, of course.) We’ll show option passing using both methods in the

examples that follow.

Distances (as in the padx and pady options in these examples) are assumed to be in

pixels but may be specified in different units using one of the suffixes c (centimeter), i

(inch), m (millimeter), or p (point). "12p", for example, is twelve points.

Getting Widget Data

We can get information back from widgets by using callbacks and by binding variables.

Callbacks are very easy to set up. The command option (shown in the TkButton call in

the example that follows) takes a Proc object, which will be called when the callback

fires. Here we pass the proc in as a block associated with the method call, but we could

also have used Kernel.lambda to generate an explicit Proc object.

require 'tk'

TkButton.new do

text "EXIT"

command { exit }

pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end

Tk.mainloop

We can also bind a Ruby variable to a Tk widget’s value using a TkVariable proxy.

This arranges things so that whenever the widget’s value changes, the Ruby variable

will automatically be updated, and whenever the variable is changed, the widget will

reflect the new value.

We show this in the following example. Notice how the TkCheckButton is set up;

the documentation says that the variable option takes a var reference as an argu-

ment. For this, we create a Tk variable reference using TkVariable.new. Accessing

mycheck.value will return the string “0” or “1” depending on whether the checkbox

is checked. You can use the same mechanism for anything that supports a var reference,

such as radio buttons and text fields.

require 'tk'

packing = { 'padx'=>5, 'pady'=>5, 'side' => 'left' }

checked = TkVariable.new

def checked.status

value == "1" ? "Yes" : "No"

end

Prepared exclusively for Dr. Eugene Wallingford

WIDGETS 244

status = TkLabel.new do

text checked.status

pack(packing)

end

TkCheckButton.new do

variable checked

pack(packing)

end

TkButton.new do

text "Show status"

command { status.text(checked.status) }

pack(packing)

end

Tk.mainloop

Setting/Getting Options Dynamically

In addition to setting a widget’s options when it’s created, you can reconfigure a widget

while it’s running. Every widget supports the configure method, which takes a Hash

or a code block in the same manner as new. We can modify the first example to change

the label text in response to a button click.

require 'tk'

root = TkRoot.new { title "Ex3" }

top = TkFrame.new(root) { relief 'raised'; border 5 }

lbl = TkLabel.new(top) do

justify 'center'

text 'Hello, World!'

pack('padx'=>5, 'pady'=>5, 'side' => 'top')

end

TkButton.new(top) do

text "Ok"

command { exit }

pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end

TkButton.new(top) do

text "Cancel"

command { lbl.configure('text'=>"Goodbye, Cruel World!") }

pack('side'=>'right', 'padx'=>10, 'pady'=>10)

end

top.pack('fill'=>'both', 'side' =>'top')

Tk.mainloop

Now when the Cancel button is clicked, the text in the label will change immediately

from “Hello, World!” to “Goodbye, Cruel World!”

You can also query widgets for particular option values using cget.

Prepared exclusively for Dr. Eugene Wallingford

WIDGETS 245

require 'tk'

b = TkButton.new do

text "OK"

justify "left"

border 5

end

b.cget('text') → "OK"

b.cget('justify') → "left"

b.cget('border') → 5

Sample Application

Here’s a slightly longer example, showing a genuine application—a pig latin generator.

Type in the phrase such as Ruby rules, and the Pig It button will instantly translate

it into pig latin.

require 'tk'

class PigBox

def pig(word)

leading_cap = word =~ /^[A­Z]/

word.downcase!

res = case word

when /^[aeiouy]/

word+"way"

when /^([^aeiouy]+)(.*)/

$2+$1+"ay"

else

word

end

leading_cap ? res.capitalize : res

end

def show_pig

@text.value = @text.value.split.collect{|w| pig(w)}.join(" ")

end

def initialize

ph = { 'padx' => 10, 'pady' => 10 } # common options

root = TkRoot.new { title "Pig" }

top = TkFrame.new(root) { background "white" }

TkLabel.new(top) {text 'Enter Text:' ; pack(ph) }

@text = TkVariable.new

TkEntry.new(top, 'textvariable' => @text).pack(ph)

pig_b = TkButton.new(top) { text 'Pig It'; pack ph}

pig_b.command { show_pig }

exit_b = TkButton.new(top) {text 'Exit'; pack ph}

exit_b.command { exit }

top.pack('fill'=>'both', 'side' =>'top')

end

end

PigBox.new

Tk.mainloop

Prepared exclusively for Dr. Eugene Wallingford

BINDING EVENTS 246

Geometry Management

In the example code in this chapter, you’ll see references to the wid-
get method pack. That’s a very important call, as it turns out—leave it
off and you’ll never see the widget. pack is a command that tells the
geometry manager to place the widget according to constraints that
we specify. Geometry managers recognize three commands.

Command Placement Specification

pack Flexible, constraint-based placement
place Absolute position
grid Tabular (row/column) position

As pack is the most commonly used command, we’ll use it in our
examples.

Binding Events
Our widgets are exposed to the real world; they get clicked, the mouse moves over

them, the user tabs into them; all these things, and more, generate events that we can

capture. You can create a binding from an event on a particular widget to a block of

code, using the widget’s bind method.

For instance, suppose we’ve created a button widget that displays an image. We’d like

the image to change when the user’s mouse is over the button.

require 'tk'

image1 = TkPhotoImage.new { file "img1.gif" }

image2 = TkPhotoImage.new { file "img2.gif" }

b = TkButton.new(@root) do

image image1

command { exit }

pack

end

b.bind("Enter") { b.configure('image'=>image2) }

b.bind("Leave") { b.configure('image'=>image1) }

Tk.mainloop

First, we create two GIF image objects from files on disk, using TkPhotoImage. Next

we create a button (very cleverly named “b”), which displays the image image1. We

then bind the Enter event so that it dynamically changes the image displayed by the

button to image2 when the mouse is over the button, and the Leave event to revert back

to image1 when the mouse leaves the button.

Prepared exclusively for Dr. Eugene Wallingford

CANVAS 247

This example shows the simple events Enter and Leave. But the named event given as

an argument to bind can be composed of several substrings, separated with dashes, in

the order modifier-modifier-type-detail. Modifiers are listed in the Tk reference and

include Button1, Control, Alt, Shift, and so on. Type is the name of the event

(taken from the X11 naming conventions) and includes events such as ButtonPress,

KeyPress, and Expose. Detail is either a number from 1 to 5 for buttons or a keysym

for keyboard input. For instance, a binding that will trigger on mouse release of button 1

while the control key is pressed could be specified as

Control­Button1­ButtonRelease

or

Control­ButtonRelease­1

The event itself can contain certain fields such as the time of the event and the x and y

positions. bind can pass these items to the callback, using event field codes. These are

used like printf specifications. For instance, to get the x and y coordinates on a mouse

move, you’d specify the call to bind with three parameters. The second parameter is

the Proc for the callback, and the third parameter is the event field string.

canvas.bind("Motion", lambda {|x, y| do_motion (x, y)}, "%x %y")

Canvas
Tk provides a Canvas widget with which you can draw and produce PostScript output.

Figure 19.1 on the next page shows a simple bit of code (adapted from the distribution)

that will draw straight lines. Clicking and holding button 1 will start a line, which will

be “rubber-banded” as you move the mouse around. When you release button 1, the

line will be drawn in that position.

A few mouse clicks, and you’ve got an instant masterpiece.

As they say, “We couldn’t find the artist, so we had to hang the picture. . . .”

Prepared exclusively for Dr. Eugene Wallingford

CANVAS 248

Figure 19.1. Drawing on a Tk Canvas

require 'tk'

class Draw

def do_press(x, y)

@start_x = x

@start_y = y

@current_line = TkcLine.new(@canvas, x, y, x, y)

end

def do_motion(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

end

end

def do_release(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

@current_line.fill 'black'

@current_line = nil

end

end

def initialize(parent)

@canvas = TkCanvas.new(parent)

@canvas.pack

@start_x = @start_y = 0

@canvas.bind("1", lambda {|e| do_press(e.x, e.y)})

@canvas.bind("B1­Motion",

lambda {|x, y| do_motion(x, y)}, "%x %y")

@canvas.bind("ButtonRelease­1",

lambda {|x, y| do_release(x, y)},

"%x %y")

end

end

root = TkRoot.new { title 'Canvas' }

Draw.new(root)

Tk.mainloop

Prepared exclusively for Dr. Eugene Wallingford

SCROLLING 249

Scrolling
Unless you plan on drawing very small pictures, the previous example may not be all

that useful. TkCanvas, TkListbox, and TkText can be set up to use scrollbars, so you

can work on a smaller subset of the “big picture.”

Communication between a scrollbar and a widget is bidirectional. Moving the scrollbar

means that the widget’s view has to change; but when the widget’s view is changed by

some other means, the scrollbar has to change as well to reflect the new position.

Since we haven’t done much with lists yet, our scrolling example will use a scrolling list

of text. In the following code fragment, we’ll start by creating a plain old TkListbox

and an associated TkScrollbar. The scrollbar’s callback (set with command) will call

the list widget’s yview method, which will change the value of the visible portion of

the list in the y direction.

After that callback is set up, we make the inverse association: when the list feels the

need to scroll, we’ll set the appropriate range in the scrollbar using TkScrollbar#set.

We’ll use this same fragment in a fully functional program in the next section.

list_w = TkListbox.new(frame) do

selectmode 'single'

pack 'side' => 'left'

end

list_w.bind("ButtonRelease­1") do

busy do

filename = list_w.get(*list_w.curselection)

tmp_img = TkPhotoImage.new { file filename }

scale = tmp_img.height / 100

scale = 1 if scale < 1

image_w.copy(tmp_img, 'subsample' => [scale, scale])

image_w.pack

end

end

scroll_bar = TkScrollbar.new(frame) do

command {|*args| list_w.yview *args }

pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

Just One More Thing

We could go on about Tk for another few hundred pages, but that’s another book. The

following program is our final Tk example—a simple GIF image viewer. You can select

a GIF filename from the scrolling list, and a thumb nail version of the image will be

displayed. We’ll point out just a few more things.

Prepared exclusively for Dr. Eugene Wallingford

SCROLLING 250

Have you ever used an application that creates a “busy cursor” and then forgets to reset

it to normal? A neat trick in Ruby will prevent this from happening. Remember how

File.new uses a block to ensure that the file is closed after it is used? We can do a

similar thing with the method busy, as shown in the next example.

This program also demonstrates some simple TkListbox manipulations—adding ele-

ments to the list, setting up a callback on a mouse button release,1 and retrieving the

current selection.

So far, we’ve used TkPhotoImage to display images directly, but you can also zoom,

subsample, and show portions of images as well. Here we use the subsample feature to

scale down the image for viewing.

require 'tk'

class GifViewer

def initialize(filelist)

setup_viewer(filelist)

end

def run

Tk.mainloop

end

def setup_viewer(filelist)

@root = TkRoot.new {title 'Scroll List'}

frame = TkFrame.new(@root)

image_w = TkPhotoImage.new

TkLabel.new(frame) do

image image_w

pack 'side'=>'right'

end

list_w = TkListbox.new(frame) do

selectmode 'single'

pack 'side' => 'left'

end

list_w.bind("ButtonRelease­1") do

busy do

filename = list_w.get(*list_w.curselection)

tmp_img = TkPhotoImage.new { file filename }

scale = tmp_img.height / 100

scale = 1 if scale < 1

image_w.copy(tmp_img, 'subsample' => [scale, scale])

image_w.pack

end

end

1. You probably want the button release, not the press, as the widget gets selected on the button press.

Prepared exclusively for Dr. Eugene Wallingford

TRANSLATING FROM PERL/TK DOCUMENTATION 251

filelist.each do |name|

list_w.insert('end', name) # Insert each file name into the list

end

scroll_bar = TkScrollbar.new(frame) do

command {|*args| list_w.yview *args }

pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

frame.pack

end

Run a block with a 'wait' cursor

def busy

@root.cursor "watch" # Set a watch cursor

yield

ensure

@root.cursor "" # Back to original

end

end

viewer = GifViewer.new(Dir["screenshots/gifs/*.gif"])

viewer.run

Translating from Perl/Tk Documentation
That’s it, you’re on your own now. For the most part, you can easily translate the doc-

umentation given for Perl/Tk to Ruby. There are a few exceptions; some methods are

not implemented, and some extra functionality is undocumented. Until a Ruby/Tk book

comes out, your best bet is to ask on the newsgroup or read the source code.

But in general, it’s pretty easy to see what’s happening. Remember that options may be

given as a hash, or in code block style, and the scope of the code block is within the

TkWidget being used, not your class instance.

Object Creation

In the Perl/Tk mapping, parents are responsible for creating their child widgets. In

Ruby, the parent is passed as the first parameter to the widget’s constructor.

Perl/Tk: $widget = $parent­>Widget([option => value])

Ruby: widget = TkWidget.new(parent, option­hash)

widget = TkWidget.new(parent) { code block }

You may not need to save the returned value of the newly created widget, but it’s there

if you do. Don’t forget to pack a widget (or use one of the other geometry calls), or it

won’t be displayed.

Prepared exclusively for Dr. Eugene Wallingford

TRANSLATING FROM PERL/TK DOCUMENTATION 252

Options

Perl/Tk: ­background => color

Ruby: 'background' => color

{ background color }

Remember that the code block scope is different.

Variable References

Perl/Tk: ­textvariable => \$variable

­textvariable => varRef

Ruby: ref = TkVariable.new

'textvariable' => ref

{ textvariable ref }

Use TkVariable to attach a Ruby variable to a widget’s value. You can then use the

value accessors in TkVariable (TkVariable#value and TkVariable#value=) to

affect the contents of the widget directly.

Prepared exclusively for Dr. Eugene Wallingford

	Introduction to Scripting Languages
	Ruby
	Using Ruby to build applications
	Features
	Advantages
	Disadvantages

	The Benefits and Applications of Using Ruby as a Programming Language
	Easy Changes
	Extremely Secure
	Fun to Code
	Faster Processing
	Open Source and Flexible
	Consistent in Nature
	Application of Ruby as a Programming Language
	E-Commerce Sites
	Content Sites
	Social Networking Sites

