

UNIT I

• Problem Solving by Search-I: Introduction to AI, Intelligent Agents

• Problem Solving by Search –II: Problem-Solving Agents, Searching for

Solutions

• Uninformed Search Strategies: Breadth-first search, Uniform cost search,

Depth-first search, Iterative deepening Depth-first search, Bidirectional

search

• Informed (Heuristic) Search Strategies: Greedy best-first search, A* search,

Heuristic Functions

• Beyond Classical Search: Hill-climbing search, Simulated annealing search

• Local Search in Continuous Spaces

• Searching with Non-Deterministic Actions,

• Searching with Partial Observations

• Online Search Agents and Unknown Environment .

UNIT I

Artificial Intelligence:

➢ “Artificial Intelligence is the ability of a computer to act like a human being”.

➢ Artificial intelligence systems consist of people, procedures, hardware, software, data, and

knowledge needed to develop computer systems and machines that demonstrate the characteristics

of intelligence

Programming Without AI Programming With AI

A computer program without AI can answer the

specific questions it is meant to solve.

A computer program with AI can answer the

generic questions it is meant to solve.

Modification in the program leads to change in

its structure.

AI programs can absorb new modifications

by putting highly independent pieces of

information together. Hence you can modify

even a minute piece of information of

program

without affecting its structure.

Modification is not quick and easy. It may lead

to affecting the program adversely.
Quick and Easy program modification.

Four Approaches of Artificial Intelligence:

➢ Acting humanly: The Turing test approach.

➢ Thinking humanly: The cognitive modelling approach.

➢ Thinking rationally: The laws of thought approach.

➢ Acting rationally: The rational agent approach.

Acting humanly: The Turing Test approach

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactory
operational definition of intelligence. A computer passes the test if a human interrogator, after

posing some written questions, cannot tell whether the written responses come from a person or

from a computer.

➢

➢ natural language processing to enable it to communicate successfully in English;

➢ knowledge representation to store what it knows or hears;

➢ automated reasoning to use the stored information to answer questions and to draw new

conclusions

➢ machine learning to adapt to new circumstances and to detect and extrapolate patterns.

Thinking humanly: The cognitive modelling approach

Analyse how a given program thinks like a human, we must have some way of determining how

humans think. The interdisciplinary field of cognitive science brings together computer models from AI and

experimental techniques from psychology to try to construct precise and testable theories of the workings

of the human mind. Although cognitive science is a fascinating field in itself, we are not going to be

discussing it all that much in this book. We will occasionally comment on similarities or differences

between AI techniques and human cognition. Real cognitive science, however, is necessarily based on

experimental investigation of actual humans or animals, and we assume that the reader only has access to

a computer for experimentation. We will simply note that AI and cognitive science continue to fertilize

each other, especially in the areas of vision, natural language, and learning.

Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify ``right thinking,'' that is,
irrefutable reasoning processes. His famous syllogisms provided patterns for argument structures that always
gave correct conclusions given correct premises.

For example, ``Socrates is a man; all men are mortal; therefore

Socrates is mortal.''

These laws of thought were supposed to govern the operation of the mind, and initiated the field of

logic.

Acting rationally: The rational agent approach

Acting rationally means acting so as to achieve one's goals, given one's beliefs. An agent is just something

that perceives and acts.

The right thing: that which is expected to maximize goal achievement, given the available

information Does not necessary involve thinking.

For Example - blinking reflex- but should be in the service of rational action.

Agents and environments

An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that

environment through actuators.

➢ Human Sensors:

Eyes, ears, and other organs for sensors.

➢ Human Actuators:

Hands, legs, mouth, and other body parts.

➢ Robotic Sensors:

Mic, cameras and infrared range finders for sensors

➢ Robotic Actuators:

Motors, Display, speakers etc

The Al Terminology used in Agents

1) Percept

The term percept refers to the agent's perceptual inputs at any given instant. Examples -

1) A human agent percepts "Bird flying in the sky "through eyes and takes i (photograph)".

2) A robotic agent perceive "Temperature of a boiler" through cameras and takes the control

action.

2) Percept Sequence

An agent's percept sequence is the complete history of everything the agent has ever

perceived. Agent has choice of action at any given instant and it can depend on the entire percept

sequence agent has recorded.

3) Agent Function

It is defined as mathematical function which maps each and every possible percept sequence

to a possible action. This function has input as percept sequence and it gives output as action. Agent

function can be represented in a tabular form.

Example -

ATM machine is agent, it display menu for withdrawing money, when ATM card is inserted.

When provided with percept sequence (1) A transaction type and (2) PIN number, then only user

gets cash.

4) Agent Program

When we want to develop agent program we need to tabulate all the agent functions that

describes any given agent.

1.3.1 Architecture of Agent

• The agent program runs on some sort of computing device, which is called the architecture.

The program we choose has to be one that the architecture will accept and run. The architecture

makes the percepts from the sensors available to the program, runs the program and feeds the

program's action choices to the effectors as they are generated. The relationship among agents,

architectures and programs can be summed up as follows:

Agent = Architecture + Program

• Following diagram illustrates the agent's action process, as specified by architecture. This can be

also termed as agent's structure.

Role of an Agent Program

• An agent program is internally implemented as agent function.

• An agent program takes input as the current percept from the sensor and return an action to the effectors

(Actuators).

Properties of Environment

The environment has multifold properties −

Discrete / Continuous − If there are a limited number of distinct, clearly defined, states of the environment, the

environment is discrete For example, chess; otherwise it is continuous For example, driving.

Fully Observable / Partially Observable − If it is possible to determine the complete state of the environment

at each time point from the precepts it is observable; otherwise it is only partially observable.

Static / Dynamic − If the environment does not change while an agent is acting, then it is static; otherwise it is

dynamic.

Single agent / Multiple agents − The environment may contain other agents which may be of the same or

different kind as that of the agent.

Accessible / Inaccessible − If the agent’s sensory apparatus can have access to the complete state of the

environment, then the environment is accessible to that agent.

Deterministic / Non-deterministic − If the next state of the environment is completely determined by the

current state and the actions of the agent, then the environment is deterministic; otherwise it is non-

deterministic.

Episodic / Non-episodic − In an episodic environment, each episode consists of the agent perceiving and then

acting. The quality of its action depends just on the episode itself. Subsequent episodes do not depend on

the actions in the previous episodes. Episodic environments are much simpler because the agent does not

need to think ahead.

➢ A rational agent should be autonomous-it should learn from its own prior knowledge

(experience).

Task environments, which are essentially the "problems" to which rational agents are the "solutions."

PEAS: Performance Measure, Environment, Actuators, Sensors Consider,

e.g., the task of designing an automated taxi driver:

Agent Type Performance measure Environment Actuators Sensors

Taxi Driver

Safe,

fast,

legal

,

comfortable trip,
maximize profits

Roads,

other

traffic,

pedestrians,

customers

Steering wheel,

accelerator, brake,

signal,

horn

Cameras,

speedometer,

GPS,

engine sensors,
keyboard

Types of AI Agents

Agents can be grouped into five classes based on their degree of perceived intelligence and

capability. All these agents can improve their performance and generate better action over the time.

1) The Simple reflex agents

• The Simple reflex agents are the simplest agents. These agents take decisions on the basis of the
current percepts and ignore the rest of the percept history(past State).

• These agents only succeed in the fully observable environment.

• The Simple reflex agent does not consider any part of percepts history during their decision and

action process.

• The Simple reflex agent works on Condition-action rule, which means it maps the current state

to action. Such as a Room Cleaner agent, it works only if there is dirt in the room.

• Problems for the simple reflex agent design approach:

o They have very limited intelligence

o They do not have knowledge of non-perceptual parts of the current state

o Mostly too big to generate and to store.

o Not adaptive to changes in the environment.

Condition-Action Rule − It is a rule that maps a state (condition) to an action.

Ex: if car-in-front-is-braking then initiate-braking.

function SIMPLE-REFLEX-AGENT(percept)

returns an action

persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)

rule ← RULE-MATCH(state, rules)

action ← rule.ACTION

return action

2) Model Based Reflex Agents:

• The Model-based agent can work in a partially observable environment, and track the situation.

• A model-based agent has two important factors:

o Model: It is knowledge about "how things happen in the world," so it is called a Model-

based agent.

o Internal State: It is a representation of the current state based on percept history.

• These agents have the model, "which is knowledge of the world" and based on the model

they perform actions.

• Updating the agent state requires information about:

o How the world evolves

o How the agent's action affects the world.

function MODEL-BASED-REFLEX-AGENT

(percept) returns an action

persistent: state, the agent’s current

conception of the world state

model , a description of how the next

state depends on current state and

action rules, a set of condition–action

rules action, the most recent action,

initially

none

state ← UPDATE-STATE (state, action, percept,

model)

rule←RULE-MATCH (state, rules)

action ←rule.ACTION

return action

3) Goal Based Agents:

o The knowledge of the current state environment is not always sufficient to decide for an agent to

what to do.

o The agent needs to know its goal which describes desirable situations.

o Goal-based agents expand the capabilities of the model-based agent by having the "goal"

information.

o They choose an action, so that they can achieve the goal.

o These agents may have to consider a long sequence of possible actions before deciding whether the

goal is achieved or not. Such considerations of different scenario are called searching and planning,

which makes an agent proactive.

4) Utility Based Agents

o These agents are similar to the goal-based agent but provide an extra component of utility

measurement(“Level of Happiness”) which makes them different by providing a measure of success

at a given state.

o Utility-based agent act based not only goals but also the best way to achieve the goal.

o The Utility-based agent is useful when there are multiple possible alternatives, and an agent has to

choose in order to perform the best action.

o The utility function maps each state to a real number to check how efficiently each action

achieves the goals.

5. Learning Agents

o A learning agent in AI is the type of agent which can learn from its past experiences, or it has

learning capabilities.

o It starts to act with basic knowledge and then able to act and adapt automatically through

learning.

o A learning agent has mainly four conceptual components, which are:

a. Learning element: It is responsible for making improvements by learning from

environment

b. Critic: Learning element takes feedback from critic which describes that how well the agent

is doing with respect to a fixed performance standard.

c. Performance element: It is responsible for selecting external action

d. Problem generator: This component is responsible for suggesting actions that will lead to

new and informative experiences.

o Hence, learning agents are able to learn, analyze performance, and look for new ways to

improve the performance.

.

Problem Solving Agents

This adopts a goal and aims to satisfy it. Example : Driving from one major town to another. Steps in

Problem Solving are :

• Goal Formulation - based on the current situation and the agent’s performance measure is the first
step in problem solving.

• Decide on factors that affect desirability to achieve goal

• Decide the various sequences of actions and states to consider. Choose best one.

• Find out which actions will lead to Goal state.

The process of looking for a sequence of actions that reaches the goal is called Search. A search algorithm
takes a problem as input and returns a solution in the form of an action sequence. Once a solution is found,
the actions it recommends can be carried out. This is called an execution Phase.

Thus we have a simple “formulate , search, execute” design for the agent as shown in the Figure.

Well- defined Problems and Solutions

A Problem can be defined formally by 5 components

• The initial state that the agent starts in.

Example : The initial state for our agent in Romania might be described as In(Arad)

• A description of the possible actions available to the agent. Given a particular state s,

ACTION(s) returns the set of actions that can be executed in s. For example, from the state In

(Arad) , the applicable actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}

• A description of what each action does: the formal name for this is the transition model,

specified by a function RESULT(s,a) that returns the state that results from doing action a in state

s.

RESULT(In(Arad),Go (Zerind)) = In (Zerind)

• The goal state , which determines whether a given state is a goal state. The agent’s goal in

Romania is the singleton set {In(Bucharest)}

• A path cost function that assigns a numeric cost to each path. The problem-solving agent
chooses a cost function that reflects its own performance measure.

Fig : A simplified road map of part of Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest Formulate

goal: be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem Formulation is the process of deciding what actions and states to consider, given a goal. Knowledge

available to the agent is considered

• Current state

• Outcome of actions

Example Problems

A Toy Problem is intended to illustrate or exercise various problem-solving methods. A real-world problem
is one whose solutions people actually care about.

Toy Problems:

Vaccum World

States : The state is determined by both the agent location and the dirt locations. The agent is in one of

the 2 locations, each of which might or might not contain dirt. Thus there are 2*22= 8

possible world states.

Initial state: Any state can be designated as the initial state.

Actions: In this simple environment, each state has just three actions: Left, Right, and Suck.

Larger environments might also include Up and Down.

Transition model: The actions have their expected effects, except that moving Left in the leftmost square,

moving Right in the rightmost square, and Sucking in a clean square have no effect. The complete state space is

shown in Figure.

Goal test: This checks whether all the squares are clean.

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

8- Puzzle Problem

States: A state description specifies the location of each of the eight tiles and the blank in one of the nine

squares.
Initial state: Any state can be designated as the initial state. Note that any given goal can be reached from

exactly half of the possible initial states.
Actions: The simplest formulation defines the actions as movements of the blank space Left, Right, Up, or

Down. Different subsets of these are possible depending on where the blank is.

Transition model: Given a state and action, this returns the resulting state; for example, if we apply

Left to the start state in Figure 3.4, the resulting state has the 5 and the blank switched. Goal
test: This checks whether the state matches the goal configuration shown in Figure. Path cost:
Each step costs 1, so the path cost is the number of steps in the path.

Search Algorithms

Figure shows the first few steps in growing the search tree for finding a route from Arad to
Bucharest. The root node of the tree corresponds to the initial state, In(Arad). The first step is to
test whether this is a goal state. We do this by expanding the current state; that is,
GENERATING applying each legal action to the current state, thereby generating a new set
of states. In PARENT NODE this case, we add three branches from the parent node In(Arad)
leading to three new child CHILD NODE nodes: In(Sibiu), In(Timisoara), and In(Zerind).
Now we must choose which of these three possibilities to consider further.

Suppose we choose Sibiu first. We check to see whether it is a goal state (it is not) and then

expand it to get In(Arad), In(Fagaras), In(Oradea), and In(RimnicuVilcea). We can then choose

any of these four or go

LEAF NODE back and choose Timisoara or Zerind. Each of these six nodes is a leaf node,

that is, a

node with no children in the tree. The set of all leaf nodes available for expansion at any given
FRONTIER point is called the frontier.

The process of expanding nodes on the frontier continues until either a solution is found or

there are no more states to expand. The general TREE-SEARCH algorithm is shown as

follows:

PROBLEM SOLVING AGENTS

PROBLEM-SOLVING APPROACH IN ARTIFICIAL INTELLIGENCE PROBLEMS

The reflex agents are known as the simplest agents because they directly map states into

actions. Unfortunately, these agents fail to operate in an environment where the mapping is too

large to store and learn. Goal-based agent, on the other hand, considers future actions and the

desired outcomes.

Here, we will discuss one type of goal-based agent known as a problem-solving agent,

which uses atomic representation with no internal states visible to the problem-solving algorithms.

Problem-solving agent

The problem-solving agent perfoms precisely by defining problems and its several

solutions.

• According to psychology, “a problem-solving refers to a state where we wish to reach to

a definite goal from a present state or condition.”

• According to computer science, a problem-solving is a part of artificial intelligence

which encompasses a number of techniques such as algorithms, heuristics to solve a

problem.

Therefore, a problem-solving agent is a goal-driven agent and focuses on satisfying the goal.

PROBLEM DEFINITION

To build a system to solve a particular problem, we need to do four things:

(i) Define the problem precisely. This definition must include specification of

the initial situations and also final situations which constitute (i.e) acceptable solution to the

problem.

(ii) Analyze the problem (i.e) important features have an immense (i.e) huge impact

on the appropriateness of various techniques for solving the problems.

(iii) Isolate and represent the knowledge to solve the problem.

(iv) Choose the best problem – solving techniques and apply it to the particular

problem.

Steps performed by Problem-solving agent

• Goal Formulation: It is the first and simplest step in problem-solving. It organizes

the steps/sequence required to formulate one goal out of multiple goals as well as actions to

achieve that goal. Goal formulation is based on the current situation and the agent’s

performance measure (discussed below).

• Problem Formulation: It is the most important step of problem-solving which

decides what actions should be taken to achieve the formulated goal. There are following

five components involved in problem formulation:

• Initial State: It is the starting state or initial step of the agent towards its goal.

• Actions: It is the description of the possible actions available to the agent.

• Transition Model: It describes what each action does.

• Goal Test: It determines if the given state is a goal state.

• Path cost: It assigns a numeric cost to each path that follows the goal. The problem-

solving agent selects a cost function, which reflects its performance measure. Remember, an

optimal solution has the lowest path cost among all the solutions.

Note: Initial state, actions, and transition model together define the state-space of the problem

implicitly. State-space of a problem is a set of all states which can be reached from the initial state

followed by any sequence of actions. The state-space forms a directed map or graph where nodes

are the states, links between the nodes are actions, and the path is a sequence of states connected

by the sequence of actions.

• Search: It identifies all the best possible sequence of actions to reach the goal state from

the current state. It takes a problem as an input and returns solution as its output.

• Solution: It finds the best algorithm out of various algorithms, which may be proven as the

best optimal solution.

• Execution: It executes the best optimal solution from the searching algorithms to reach

the goal state from the current state.

Example Problems

Basically, there are two types of problem approaches:

• Toy Problem: It is a concise and exact description of the problem which is used by the

researchers to compare the performance of algorithms.

• Real-world Problem: It is real-world based problems which require solutions. Unlike a toy

problem, it does not depend on descriptions, but we can have a general formulation of the

problem.

Some Toy Problems

• 8 Puzzle Problem: Here, we have a 3×3 matrix with movable tiles numbered from 1 to 8

with a blank space. The tile adjacent to the blank space can slide into that space. The

objective is to reach a specified goal state similar to the goal state, as shown in the below

figure.

• In the figure, our task is to convert the current state into goal state by sliding digits into the

blank space.

In the above figure, our task is to convert the current(Start) state into goal state by sliding digits

into the blank space.

The problem formulation is as follows:

• States: It describes the location of each numbered tiles and the blank tile.

• Initial State: We can start from any state as the initial state.

• Actions: Here, actions of the blank space is defined, i.e., either left, right, up or down

• Transition Model: It returns the resulting state as per the given state and actions.

• Goal test: It identifies whether we have reached the correct goal-state.

• Path cost: The path cost is the number of steps in the path where the cost of each step is 1.

Note: The 8-puzzle problem is a type of sliding-block problem which is used for testing

new search algorithms in artificial intelligence.

• 8-queens problem: The aim of this problem is to place eight queens on a chessboard in an

order where no queen may attack another. A queen can attack other queens either diagonally

or in same row and column.

From the following figure, we can understand the problem as well as its correct solution.

https://github.com/topics/sliding-puzzle-game?o=desc&s=updated
https://www.tutorialandexample.com/artificial-intelligence-tutorial/

It is noticed from the above figure that each queen is set into the chessboard in a position where

no other queen is placed diagonally, in same row or column. Therefore, it is one right approach to

the 8-queens problem.

For this problem, there are two main kinds of formulation:

1. Incremental formulation: It starts from an empty state where the operator augments a queen

at each step.

Following steps are involved in this formulation:

• States: Arrangement of any 0 to 8 queens on the chessboard

• Initial State: An empty chessboard

• Actions: Add a queen to any empty box.

• Transition model: Returns the chessboard with the queen added in a box.

• Goal test: Checks whether 8-queens are placed on the chessboard without any attack.

• Path cost: There is no need for path cost because only final states are counted.

In this formulation, there is approximately 1.8 x 1014 possible sequence to

investigate.

2. Complete-state formulation: It starts with all the 8-queens on the chessboard and moves them

around, saving from the attacks.

Following steps are involved in this formulation

• States: Arrangement of all the 8 queens one per column with no queen attacking the other

queen.

• Actions: Move the queen at the location where it is safe from the attacks.

This formulation is better than the incremental formulation as it reduces the state space from 1.8 x

1014 to 2057, and it is easy to find the solutions.

Some Real-world problems

• Traveling salesperson problem(TSP): It is a touring problem where the

salesman can visit each city only once. The objective is to find the shortest tour and sell-out

the stuff in each city.

• VLSI Layout problem: In this problem, millions of components and connections

are positioned on a chip in order to minimize the area, circuit-delays, stray-capacitances, and

maximizing the manufacturing yield.

The layout problem is split into two parts:

• Cell layout: Here, the primitive components of the circuit are grouped into cells,

each performing its specific function. Each cell has a fixed shape and size. The task is

to place the cells on the chip without overlapping each other.

• Channel routing: It finds a specific route for each wire through the gaps between the

cells.

• Protein Design: The objective is to find a sequence of amino acids which will fold into

3D protein having a property to cure some disease.

Searching for solutions

We have seen many problems. Now, there is a need to search for solutions to solve them.

In this section, we will understand how searching can be used by the agent to solve a problem.

For solving different kinds of problem, an agent makes use of different strategies to reach

the goal by searching the best possible algorithms. This process of searching is known as search

strategy.

SEARCH FOR SOLUTIONS/ SEARCH STRATEGIES

Search Algorithm Terminologies:

o Search: Searchingis a step by step procedure to solve a search-problem in a given

search space. A search problem can have three main factors:

a. Search Space: Search space represents a set of possible solutions, which a

system may have.

b. Start State: It is a state from where agent begins the search.

c. Goal test: It is a function which observe the current state and returns whether

the goal state is achieved or not.

o Search tree: A tree representation of search problem is called Search tree. The root of

the search tree is the root node which is corresponding to the initial state.

o Actions: It gives the description of all the available actions to the agent.

o Transition model: A description of what each action do, can be represented as a

transition model.

o Path Cost: It is a function which assigns a numeric cost to each path.

o Solution: It is an action sequence which leads from the start node to the goal node.

o Optimal Solution: If a solution has the lowest cost among all solutions.

Properties of Search Algorithms:

Following are the four essential properties of search algorithms to compare the efficiency

of these algorithms:

Completeness: A search algorithm is said to be complete if it guarantees to return a solution if at

least any solution exists for any random input.

Optimality: If a solution found for an algorithm is guaranteed to be the best solution (lowest

path cost) among all other solutions, then such a solution for is said to be an optimal solution.

Time Complexity: Time complexity is a measure of time for an algorithm to complete its task.

Space Complexity: It is the maximum storage space required at any point during the search,

as the complexity of the problem.

Types of Search Algorithms

There are two types of strategies that describe a solution for a given problem:

1. Uninformed Search (Blind Search)

This type of search strategy does not have any additional information about the states except

the information provided in the problem definition. They can only generate the successors and

distinguish a goal state from a non-goal state. These type of search does not maintain any internal

state, that's why it is also known as Blind search.

There are following types of uninformed searches:

• Breadth-first search

• Uniform cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

• Bidirectional search

2. Informed Search (Heuristic Search)

This type of search strategy contains some additional information about the states beyond the

problem definition. This search uses problem-specific knowledge to find more efficient solutions.

This search maintains some sort of internal states via heuristic functions (which provides hints),

so it is also called heuristic search.

• Best first search (Greedy search)

• A* search

UNINFORMED SEARCH ALGORITHMS

Uninformed search is a class of general-purpose search algorithms which operates in

brute force-way. Uninformed search algorithms do not have additional information about state

or search space other than how to traverse the tree, so it is also called blind search.

Following are the various types of uninformed search algorithms:

Search Algorithm Terminologies:

https://www.tutorialandexample.com/informed-search-heuristic-search/

1. BREADTH-FIRST SEARCH:

o Breadth-first search is the most common search strategy for traversing a tree or graph. This

algorithm searches breadthwise in a tree or graph, so it is called breadth-first search.

o BFS algorithm starts searching from the root node of the tree and expands all successor node at

the current level before moving to nodes of next level.

o The breadth-first search algorithm is an example of a general-graph search algorithm.

o Breadth-first search implemented using FIFO queue data structure.

o BFS will provide a solution if any solution exists.

o If there are more than one solutions for a given problem, then BFS will provide the

minimal solution which requires the least number of steps.

Disadvantages:

o It requires lots of memory since each level of the tree must be saved into memory to

expand the next level.

o BFS needs lots of time if the solution is far away from the root node.

Example:

1. S---> A--->B---->C--->D---->G--->H--->E---->F---->I --- >K

Advantages:

In the below tree structure, we have shown the traversing of the tree using BFS algorithm

from the root node S to goal node K. BFS search algorithm traverse in layers, so it will

follow the path which is shown by the dotted arrow, and the traversed path will be:

Time Complexity: Time Complexity of BFS algorithm can be obtained by the number of

nodes traversed in BFS until the shallowest Node. Where the d= depth of shallowest solution

and b is a node at every state.

T (b) = 1+b2+b3+. + bd= O (bd)

Space Complexity: Space complexity of BFS algorithm is given by the Memory size of

frontier which is O(bd).

Completeness: BFS is complete, which means if the shallowest goal node is at some finite

depth, then BFS will find a solution.

Optimality: BFS is optimal if path cost is a non-decreasing function of the depth of the node.

Depth-first search isa recursive algorithm for traversing a tree or graph data
structure.

It is called the depth-first search because it starts from the root node and

follows each path to its greatest depth node before moving to the next path.

DFS uses a stack data structure for its implementation.

The process of the DFS algorithm is similar to the BFS algorithm.

2. DEPTH-FIRST SEARCH

o There is the possibility that many states keep re-occurring, and there is no guarantee of

finding the solution.

o DFS algorithm goes for deep down searching and sometime it may go to the infinite

loop.

Example:

In the below search tree, we have shown the flow of depth-first search, and it will follow the

order as:

Root node--->Left node --- > right node.

It will start searching from root node S, and traverse A, then B, then D and E, after traversing

Advantage:

Note: Backtracking is an algorithm technique for finding all possible solutions

using recursion.

DFS requires very less memory as it only needs to store a stack of the nodes on the

path from root node to the current node.

It takes less time to reach to the goal node than BFS algorithm (if it traverses

in the right path).

Disadvantage:

every node within a limited search tree.

Time Complexity: Time complexity of DFS will be equivalent to the node traversed by the

algorithm. It is given by:

T(n)= 1+ n2+ n3 +. + nm=O(nm)

Where, m= maximum depth of any node and this can be much larger than d (Shallowest

solution depth)

Space Complexity: DFS algorithm needs to store only single path from the root node, hence

space complexity of DFS is equivalent to the size of the fringe set, which is O(bm).

3.DEPTH-LIMITED SEARCH ALGORITHM:

Completeness: DFS search algorithm is complete within finite state space as it will
expand

E, it will backtrack the tree as E has no other successor and still goal node is not found.

After backtracking it will traverse node C and then G, and here it will terminate as it found

goal node.

A depth-limited search algorithm is similar to depth-first search with a predetermined

limit. Depth-limited search can solve the drawback of the infinite path in the Depth-first

search. In this algorithm, the node at the depth limit will treat as it has no successor

nodes further.

Depth-limited search can be terminated with two Conditions of
failure:

Standard failure value: It indicates that problem does not have any solution.

Cutoff failure value: It defines no solution for the problem within a given depth
limit. Advantages

:

Depth-limited search is Memory
efficient.

Disadvantage
s:

Depth-limited search also has a disadvantage of incompleteness.

It may not be optimal if the problem has more than one solution.

Example:

graph. This algorithm comes into play when a different cost is available for each edge. The

primary goal of the uniform-cost search is to find a path to the goal node which has the lowest

cumulative cost. Uniform-cost search expands nodes according to their path costs form the root

node. It can be used to solve any graph/tree where the optimal cost is in demand. A uniform-

cost search algorithm is implemented by the priority queue. It gives maximum priority to the

Completeness: DLS search algorithm is complete if the solution is above the depth-
limit.

Time Complexity: Time complexity of DLS algorithm is
O(bℓ).

Space Complexity: Space complexity of DLS algorithm is
O(b×ℓ).

Optimal: Depth-limited search can be viewed as a special case of DFS, and it is also
not

optimal even if ℓ>d.

4. UNIFORM-COST SEARCH ALGORITHM:

Uniform-cost search is a searching algorithm used for traversing a weighted
tree or

lowest cumulative cost. Uniform cost search is equivalent to BFS algorithm if the path cost of

all edges is the same.

Advantages:

o Uniform cost search is optimal because at every state the path with the least cost is

chosen.

Completeness:

Uniform-cost search is complete, such as if there is a solution, UCS will find it.

Time Complexity:

Disadvantages:

o It does not care about the number of steps involve in searching and only

concerned about path cost. Due to which this algorithm may be stuck in an

infinite loop.
Example:

Let C* is Cost of the optimal solution, and ε is each step to get closer to the goal node. Then

the number of steps is = C*/ε+1. Here we have taken +1, as we start from state 0 and end to

C*/ε.

Hence, the worst-case time complexity of Uniform-cost search isO(b1 + [C*/ε])/.

Space Complexity:

The same logic is for space complexity so, the worst-case space complexity of Uniform-cost

search is O(b1 + [C*/ε]).

Optimal:

Uniform-cost search is always optimal as it only selects a path with the lowest path cost.

5. ITERATIVE DEEPENINGDEPTH-FIRST SEARCH:

The iterative deepening algorithm is a combination of DFS and BFS algorithms. This

search algorithm finds out the best depth limit and does it by gradually increasing the limit until

a goal is found.

This algorithm performs depth-first search up to a certain "depth limit", and it keeps

increasing the depth limit after each iteration until the goal node is found.

This Search algorithm combines the benefits of Breadth-first search's fast search and

depth-first search's memory efficiency.

The iterative search algorithm is useful uninformed search when search space is large,

and depth of goal node is unknown.

Advantages:

o Itcombines the benefits of BFS and DFS search algorithm in terms of fast search and

memory efficiency.

Disadvantages:

The main drawback of IDDFS is that it repeats all the work of the previous phase.

Example:

Following tree structure is showing the iterative deepening depth-first search. IDDFS algorithm

performs various iterations until it does not find the goal node. The iteration performed by the

algorithm is given as:

Completeness:

This algorithm is complete is ifthe branching factor is finite.

Time Complexity:Let's suppose b is the branching factor and depth is d then the worst-case

time complexity is O(bd).

1'st

2'n

d

3'r

Iteration -- >

Iteration----> A,

Iteration------>A, B, D,

Iteration ---- >A, B, D, H,

E,

I, E,

B,

C,

C,

F,

F, K,

A

C

G

In the fourth iteration, the algorithm will find the goal
node.

Space Complexity:

The space complexity of IDDFS will be O(bd).

Optimal:

IDDFS algorithm is optimal if path cost is a non- decreasing function of the depth of the node.

In the below search tree, bidirectional search algorithm is applied. This algorithm divides one

graph/tree into two sub-graphs. It starts traversing from node 1 in the forward direction and

starts from goal node 16 in the backward direction.

The algorithm terminates at node 9 where two searches meet.

6. BIDIRECTIONAL SEARCH ALGORITHM:

Bidirectional search algorithm runs two simultaneous searches, one form initial

state called as forward-search and other from goal node called as backward-search, to

find the goal node. Bidirectional search replaces one single search graph with two small

subgraphs in which one starts the search from an initial vertex and other starts from goal

vertex. The search stops

Bidirectional search can use search techniques such as BFS, DFS, DLS,
etc.

Advantages
:

Bidirectional search is fast.

Bidirectional search requires less memory

Disadvantages:

Implementation of the bidirectional search tree is difficult.

In bidirectional search, one should know the goal state in advance.

Example:

INFORMED SEARCH ALGORITHMS

So far we have talked about the uninformed search algorithms which looked through search space for all possible

solutions of the problem without having any additional knowledge about search space. But informed search algorithm

contains an array of knowledge such as how far we are from the goal, path cost, how to reach to goal node, etc. This

knowledge help agents to explore less to the search space and find more efficiently the goal node.

The informed search algorithm is more useful for large search space. Informed search algorithm uses the idea of

heuristic, so it is also called Heuristic search.

Heuristics function: Heuristic is a function which is used in Informed Search, and it finds the most promising

path. It takes the current state of the agent as its input and produces the estimation of how close agent is from the goal.

Completeness: Bidirectional Search is complete if we use BFS in both
searches.

Time Complexity: Time complexity of bidirectional search using BFS is
O(bd).

Space Complexity: Space complexity of bidirectional search is
O(bd).

Optimal: Bidirectional search is optimal

The heuristic method, however, might not always give the best solution, but it guaranteed to find a good solution in

reasonable time. Heuristic function estimates how close a state is to the goal. It is represented by h(n), and it calculates

the cost of an optimal path between the pair of states. The value of the heuristic function is always positive.

Admissibility of the heuristic function is given as:

1. h(n) <= h*(n)

Here h(n) is heuristic cost, and h*(n) is the estimated cost. Hence heuristic cost should be less than or equal to the

estimated cost.

Pure Heuristic Search:

Pure heuristic search is the simplest form of heuristic search algorithms. It expands nodes based on their heuristic

value h(n). It maintains two lists, OPEN and CLOSED list. In the CLOSED list, it places those nodes which have already

expanded and in the OPEN list, it places nodes which have yet not been expanded.

On each iteration, each node n with the lowest heuristic value is expanded and generates all its successors and n is

placed to the closed list. The algorithm continues unit a goal state is found.

In the informed search we will discuss two main algorithms which are given below:

o Best First Search Algorithm(Greedy search)

o A* Search Algorithm

1.) BEST-FIRST SEARCH ALGORITHM (GREEDY SEARCH):

Greedy best-first search algorithm always selects the path which appears best at that moment. It is the

combination of depth-first search and breadth-first search algorithms. It uses the heuristic function and search. Best-first

search allows us to take the advantages of both algorithms. With the help of best-first search, at each step, we can choose

the most promising node. In the best first search algorithm, we expand the node which is closest to the goal node and

the closest cost is estimated by heuristic function, i.e.

1. f(n)= g(n).

Were, h(n)= estimated cost from node n to the goal.

The greedy best first algorithm is implemented by the priority queue.

Best first search algorithm:

o Step 1: Place the starting node into the OPEN list.

o Step 2: If the OPEN list is empty, Stop and return failure.

o Step 3: Remove the node n, from the OPEN list which has the lowest value of h(n), and places it in the CLOSED

list.

o Step 4: Expand the node n, and generate the successors of node n.

o Step 5: Check each successor of node n, and find whether any node is a goal node or not. If any successor node

is goal node, then return success and terminate the search, else proceed to Step 6.

o Step 6: For each successor node, algorithm checks for evaluation function f(n), and then check if the node has

been in either OPEN or CLOSED list. If the node has not been in both list, then add it to the OPEN list.

o Step 7: Return to Step 2.

Advantages:

o Best first search can switch between BFS and DFS by gaining the advantages of both the algorithms.

o This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:

o It can behave as an unguided depth-first search in the worst case scenario.

o It can get stuck in a loop as DFS.

o This algorithm is not optimal.

Example:

Consider the below search problem, and we will traverse it using greedy best-first search. At each iteration, each

node is expanded using evaluation function f(n)=h(n) , which is given in the below table.

Consider the below search problem, and we will traverse it using greedy best-first search. At each iteration, each

node is expanded using evaluation function f(n)=h(n) , which is given in the below table.

In this search example, we are using two lists which are OPEN and CLOSED Lists. Following are the iteration for

traversing the above example.

Expand the nodes of S and put in the CLOSED list

Initialization: Open [A, B], Closed [S]

Iteration 1: Open [A], Closed [S, B]

Iteration 2: Open [E, F, A], Closed [S, B]

: Open [E, A], Closed [S, B, F]

Iteration 3: Open [I, G, E, A], Closed [S, B, F]

: Open [I, E, A], Closed [S, B, F, G]

Hence the final solution path will be: S----> B----->F ---- > G

Time Complexity: The worst case time complexity of Greedy best first search is O(bm).

Space Complexity: The worst case space complexity of Greedy best first search is O(bm). Where, m is the maximum

depth of the search space.

Complete: Greedy best-first search is also incomplete, even if the given state space is finite.

Optimal: Greedy best first search algorithm is not optimal.

2.) A* SEARCH ALGORITHM:

A* search is the most commonly known form of best-first search. It uses heuristic function h(n), and cost to reach

the node n from the start state g(n). It has combined features of UCS and greedy best-first search, by which it solve the

problem efficiently. A* search algorithm finds the shortest path through the search space using the heuristic function.

This search algorithm expands less search tree and provides optimal result faster. A* algorithm is similar to UCS except

that it uses g(n)+h(n) instead of g(n).

In A* search algorithm, we use search heuristic as well as the cost to reach the node.

Hence we can combine both costs as following, and this sum is called as a fitness number.

Algorithm of A* search:

Step1: Place the starting node in the OPEN list.

At each point in the search space, only those node is expanded which have the lowest

value of f(n), and the algorithm terminates when the goal node is found.

Step 2: Check if the OPEN list is empty or not, if the list is empty then return failure and stops.

Step 3: Select the node from the OPEN list which has the smallest value of evaluation function (g+h), if node n is goal

node then return success and stop, otherwise

Step 4: Expand node n and generate all of its successors, and put n into the closed list. For each successor n', check whether

n' is already in the OPEN or CLOSED list, if not then compute evaluation function for n' and place into Open list.

Step 5: Else if node n' is already in OPEN and CLOSED, then it should be attached to the back pointer which reflects the

lowest g(n') value.

Step 6: Return to Step 2.

Advantages:

o A* search algorithm is the best algorithm than other search algorithms.

o A* search algorithm is optimal and complete.

o This algorithm can solve very complex problems.

Disadvantages:

o It does not always produce the shortest path as it mostly based on heuristics and approximation.

o A* search algorithm has some complexity issues.

o The main drawback of A* is memory requirement as it keeps all generated nodes in the memory, so it is not

practical for various large-scale problems.

Example:

In this example, we will traverse the given graph using the A* algorithm. The heuristic value of all states is given in the

below table so we will calculate the f(n) of each state using the formula f(n)= g(n) + h(n), where g(n) is the cost to reach

any node from start state.

Here we will use OPEN and CLOSED list.

Solution:

Initialization: {(S, 5)}

Iteration1: {(S--> A, 4), (S-->G, 10)}

Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)}

Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 7), (S-->G, 10)}

Iteration 4 will give the final result, as S--->A--->C--->G it provides the optimal path with cost 6.

Points to remember:

o A* algorithm returns the path which occurred first, and it does not search for all remaining paths.

o The efficiency of A* algorithm depends on the quality of heuristic.

o A* algorithm expands all nodes which satisfy the condition f(n)<="" li="">

Complete: A* algorithm is complete as long as:

o Branching factor is finite.

o Cost at every action is fixed.

Optimal: A* search algorithm is optimal if it follows below two conditions:

o Admissible: the first condition requires for optimality is that h(n) should be an admissible heuristic for

A* tree search. An admissible heuristic is optimistic in nature.

o Consistency: Second required condition is consistency for only A* graph-search.

If the heuristic function is admissible, then A* tree search will always find the least cost path.

Time Complexity: The time complexity of A* search algorithm depends on heuristic function, and the number of nodes

expanded is exponential to the depth of solution d. So the time complexity is O(b^d), where b is the branching factor.

Space Complexity: The space complexity of A* search algorithm is O(b^d)

BEYOND CLASSICAL SEARCH

1. Hill Climbing search/Steepest-ascent Hill Climbing/Greedy Local Search

 moves in the direction of increasing value(uphill) to reach a peak state(goal).

 it terminates when it reaches a "peak" where no neighbor has a higher value.

 Used when a good heuristic is available

 does not maintain a search tree, so the current node data structure need only to record the state and its

objective function value(i.e., f(n)

 At each step the current node is replaced by the best neighbor

 Algorithm

 Example: Drawbacks of hill climbing(pictorial representation)

1. Local maxima/foot hills /no uphills step

➢ A state that is better(higher) than each of its neighboring states, but not better(lower) than some

other states far away

➢ Example: consider the following tree. ‘a’ is an initial state and ‘h’ and ‘k’ are final states. The

number near the states is the heuristic value

➢ by applying hill climbing algorithm, we get a->f->g which is

local maxima.

➢ Hill climbing cannot go back and choose a new node (i.e. ‘e’

) since it keeps no history

➢ to overcome local maxima , backtrack to one of the previous states and explore other directions

2. Plateau (flat-plateau whose edges go downhill. or shoulder - a plateau that has an uphill edge.)

 flat area of the search space in which all the neighboring(successors) states have same value=>

therefore cannot determine the best direction

 Example

➢ The evaluation function value of B, C, D are same and at the same time Best

successor has the same value as the current state

MAX Version

function HILL-CLIMBING(problem) returns a state that is a local maximum current <-
MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor <- a highest-valued successor of current
if VALUE[neighbor] ≤ VALUE[current] then return
STATE[current] current <- neighbor

MIN Version

function HILL-CLIMBING(problem) returns a state that is a local maximum current <-
MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor <- a lowest-valued successor of current
if VALUE[neighbor] ≥ VALUE[current] then return
STATE[current] current <- neighbor

➢ To overcome plateau skip few states or make a jump

in new directions

3. Ridges

➢ A special kind of local maxima

➢ Defn-1: An area of the search space which is higher than the surrounding area and that itself has a

slope

➢ Defn-2: is a sequence of local maxima

➢ To overcome ridges explore in several directions to find out the correct path

 Variants of hill-climbing

1. Stochastic hill climbing => choose successor at random

 does not focus on all the nodes

 selects one node at random and decides whether it should be expanded or search for a better one.

 the probability of selection can vary with the steepness of the uphill move.

 Better than steepest ascent

2. First-choice hill climbing/Simple hill climbing => choose first successor that is better than

current state

 implements stochastic hill climbing by generating successors randomly until one is generated

that is better than the current state

3. Random-restart hill climbing => try with different initial states if chosen initial state fails

 based on try and try strategy

 It conducts a series of hill-climbing searches from randomly generated initial state, stopping

when a goal is found. (Or) generates different initial state until it finds a goal state.

2. Simulated annealing

 Annealing: is the process of controlling cooling

 Inspired from the process of annealing in metal work

 Physical process in which physical substances such as metals are melted and then gradually cooled until

some solid state is reached=> goal is to produce a minimal energy final state.

 The rate at which the system is cooled is called annealing schedule

 During cooling process, sometimes a worsen state (unaccepted state) can be made.

 The worsen state can be accepted by some probability(accept this state with probability less than 1)

 The probability is defined as

 Note: the chance of accepting worst solution is done only when the temperature is high

 Physical annealing is simulated=> simulated annealing

 Simulated Annealing

 Variants of hill climbing in which at the beginning of the process Some downhill moves can be

made=> helps to avoid local maxima

 Used when the number of moves from a given state is large

 The probability in simulated annealing is defined as

 Annealing schedule consists of 4 components

i) Starting temperature(Ts)

ii) Final temperature(Tf)

iii) Temperature length(TL): criteria used to decide when the temperature of the system should be

reduced)

iv) Cooling criteria/temperature decrement(f(t)): amount by which the temperature will be

reduced each time it is changed

 Algorithm in simple words

• Generate a random new neighbor from current state.

• If it’s better take it.

• If it’s worse then take it with some probability proportional to the temperature and the delta

between the new and old states

 Algorithm

 Property of simulated annealing search :T decreases slowly enough then simulated annealing

search will find a global optimum with probability one

 Applications

a. VLSI layout

b. Airline scheduling

 Difference between simulated annealing and hill climbing

1. Annealing schedule must be maintained

2. Moves to the worst state is accepted

3. Maintain best state found so far

