
 

 

 

 

 

 

 

UNIT – II 

 
Problem Solving by Search-II and Propositional Logic 

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-

Time Decisions. 

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint 

Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems. 

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, 

Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite 

clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on 

Propositional Logic. 
 



 

 

 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



    

 

 



 



 



 



 



 



 



 



The above diagram explanation in terms of words 

 

 

Unanswered questions 

• Which variable should be assigned next (variable ordering)? 

•  In what order should its values be tried (value ordering)? 

•  What inferences should be performed at each step in the search (INFERENCE)? 

Variable ordering 

(a) Minimum-Remaining-Values (MRV) heuristic: 

Chooses the variable with the fewest "legal" values 

Also called the "most constrained variable" or "fail-first" heuristic.For example, after the  assignments 

for WA=red and NT =green, there is only one possible value for SA, so it makes sense to assign 

SA=blue next rather than assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are 

all forced. 

 

 

 

(b). Degree heuristic 

selects the variable that is involved in the largest number of constraints on other unassigned variables 

reduces the branching factor on future choices E.g. SA is the variable with highest degree, 5. So, it will 

be chosen. The minimum-remaining-values heuristic is usually a more powerful guide, but the degree 

heuristic can be useful as a tie-breaker. 

 



Value ordering 

 Least-Constraining-Value heuristic 

prefers the value that rules out the fewest choices for the neighboring variables in the constraint graph 

For example, we have generated the partial assignment with WA=red and NT =green and that our next 

choice is for Q. Blue would be a bad choice because it eliminates the last legal value left for Q's 

neighbor, SA. The least-constraining-value heuristic therefore prefers red to blue. 

In general, the heuristic is trying to leave the maximum flexibility for subsequent variable assignments. 

 

 

Inference 

Forward Checking 

Whenever a variable X is assigned, the forward-checking process 

establishes arc consistency for it: for each unassigned variable Y that is connected to X by a constraint, 

delete from Y 's domain any value that is inconsistent with the value chosen for X. 

 

 

Figure 6.7 The progress of a map-coloring search with forward checking. WA=red is assigned first; then 

forward checking deletes red from the domains of the neighboring variables NT and SA. After Q= green 

is assigned, green is deleted from the domains of NT, SA, and NSW. After V = blue is assigned, blue is 

deleted from the domains of NSW and SA, leaving SA with no legal values. 

 

LOCAL SEARCH FOR CSPS: 

• Local search algorithms  turn out to be effective in solving many CSPs. They use a complete-

state formulation: the initial state assigns a value to every variable, and the search changes the 

value of one variable at a time.  

• For example, in the 8-queens problem (see Figure 4.3), the initial state might be a random 

configuration of 8 queens in 8 columns, and each step moves a single queen to a new position in 

its column.  



• Typically, the initial guess violates several constraints. The point of local search is to eliminate 

the violated constraints In choosing a new value for a variable, the most obvious heuristic is to 

select the value that results in the minimum number of conflicts with other variables—the min-

conflicts heuristic. The algorithm is shown in Figure 6.8 and its application to an 8-queens problem is 

diagrammed in Figure 6.9. 

 

 

 

Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens problem, if you don’t count 

the initial placement of queens, the run time of min-conflicts is roughly independent of problem size. It solves 

even the million-queens problem in an averageof 50 steps (after the initial assignment). Roughly speaking, n-

queens is easy for local search because solutions are densely distributed throughout the state space. Min-conflicts 

also works well for hard problems. 
 

THE STRUCTURE OF PROBLEMS 

To solve a tree-structured CSP, first pick any variable to be the root of the tree, and choose an ordering 

of the variables such that each variable appears after its parent in the tree. Such an ordering is called a 

topological sort. Figure 6.10(a) shows a sample tree and (b) shows one possible ordering.  



Any tree with n nodes has n−1 arcs, so we can make this graph directed arc-consistent in O(n) steps, 

each of which must compare up to d possible domain values for two variables, 

 

Two ways to reduce tree in to constraint Graphs: 

 

. The complete algorithm is shown in Figure 6.11. 

 

Two ways to reduce the trees in to constraint graphs:  

(1) Cut Set Conditioning: 

The general algorithm is as follows: 

1. Choose a subset S of the CSP's variables such that the constraint graph becomes a tree after removal 

of S. S is called a cycle cutset. 

2. For each possible assignment to the variables in S that satisfies all constraints on S, 

(a) remove from the domains of the remaining variables any values that are inconsistent with the 

assignment for S, and  

(b) If the remaining CSP has a solution, return it together with the assignment for S. 

 

 



 

2. Tree decomposition 

A tree decomposition must satisfy the following three requirements: 

Every variable in the original problem appears in at least one of the subproblems. 

• If two variables are connected by a constraint in the original problem, they must appear together (along 

with the constraint) in at least one of the subproblems. 

• If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path 

connecting those subproblems. 

Figure 6.13 Atree decomposition of the constraint graph in Figure 6.12) 

 

 

 

 

 

 

 

 



KNOWLEDGE-BASED AGENT IN ARTIFICIAL INTELLIGENCE 

• For efficient decision-making and reasoning, an intelligent agent need knowledge about the real 

world. 

• Knowledge-based agents are capable of maintaining an internal state of knowledge, reasoning over 

that knowledge, updating their knowledge following observations, and taking actions. These 

agents can use some type of formal representation to represent the world and act intelligently. 

• Knowledge-based agents are composed of two main parts: 

o Knowledge-base and 

o Inference system 

The following must be able to be done by a knowledge-based agent: 

• Agents should be able to represent states, actions, and other things. 

• A representative New perceptions should be able to be incorporated. 

• An agent's internal representation of the world can be updated. 

• An agent can infer the world's intrinsic representation. 

• An agent can deduce the best course of action. 

 

The architecture of knowledge-based agent: 

 
A generic architecture for a knowledge-based agent is depicted in the diagram above. By observing the 

environment, the knowledge-based agent (KBA) receives input from it. The input is taken by the agent's 

inference engine, which also communicates with KB to make decisions based on the knowledge store in 

KB. KBA's learning component keeps the KB up to date by learning new information. 

Knowledge base: : A knowledge-based agent's knowledge base, often known as KB, is a critical 

component. It's a group of sentences ('sentence' is a technical term that isn't the same as'sentence' in 

English). These sentences are written in what is known as a knowledge representation language. The KBA 

Knowledge Base contains information about the world. 



 

Why use a knowledge base? 

For an agent to learn from experiences and take action based on the knowledge, a knowledge base is 

required. 

Inference system 

Inference is the process of creating new sentences from existing ones. We can add a new sentence to the 

knowledge base using the inference mechanism. A proposition about the world is a sentence. The 

inference system uses logical rules to deduce new information from the KB. 

The inference system generates new facts for an agent to update the knowledge base. An inference system 

is based on two rules, which are as follows: 

• Forward chaining 

• Backward chaining 

Operations Performed by KBA 

• TELL: This operation tells the knowledge base, what it discern from the environment. 

• ASK: This operation asks the knowledge base what action it should perform. 

• Perform: It performs the selected action. 

A generic knowledge-based agent: 

The structure outline of a generic knowledge-based agents program: 

  

    function KB-AGENT(percept):   

        persistent: KB, a knowledge base    

    t, a counter, initially 0, indicating time    

    TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))    

    Action = ASK(KB, MAKE-ACTION-QUERY(t))    

    TELL(KB, MAKE-ACTION-SENTENCE(action, t))   

    t = t + 1   

    return action 

 

The knowledge-based agent receives a percept as input and responds with an action. The agent is in charge 

of the knowledge base, KB, and it comes with some real-world experience. It also features a counter that 

starts at zero to indicate how long the entire operation will take. 

When the function is called, it conducts the following three operations: 

• To begin, it TELLS the KB what it sees. 

• Second, it asks the KB what action it should take. 

• Finally, the third agent program informs the KB of the action that was chosen. 

The MAKE-PERCEPT-SENTENCE command constructs a sentence indicating that the agent 

perceived the specified percept at the specified time. 

 

The MAKE-ACTION-QUERY command provides a statement that asks which action should be taken 

right now. 

 

MAKE-ACTION-Statement creates a sentence stating that the selected action was carried out. 



WUMPUS WORLD  

The Wumpus world is a basic world example that demonstrates the value of a knowledge-based agent 

and how knowledge representation is represented. It was inspired by Gregory Yob's 1973 video game 

Hunt the Wumpus. 

 

The Wumpus world is a cave with 4/4 rooms and pathways connecting them. As a result, there are a 

total of 16 rooms that are interconnected. We now have a knowledge-based AI capable of progressing in 

this world. There is an area in the cave with a beast named Wumpus who eats everybody who enters. 

The agent can shoot the Wumpus, but he only has a single arrow. There are some Pits chambers in the 

Wumpus world that are bottomless, and if an agent falls into one, he will be stuck there indefinitely. The 

intriguing thing about this cave is that there is a chance of finding a gold heap in one of the rooms. So 

the agent's mission is to find the gold and get out of the cave without getting eaten by Wumpus or 

falling into Pits. the agent returns with gold, he will be rewarded, but if he is devoured by Wumpus or 

falls into the pit, he will be penalized. 

 

Note: Wumpus is immobile in this scene. 

 

A sample diagram for portraying the Wumpus world is shown below. It depicts some rooms with Pits, 

one room with Wumpus, and one agent in the world's (1, 1) square position. 

 

There are also some components which can help the agent to navigate the cave. These components 

are given as follows: 

• The rooms adjacent to the Wumpus room are stinky, thus there is a stench there. 

• The room next to PITs has a breeze, so if the agent gets close enough to PIT, he will feel it. 

• If and only if the room contains gold, there will be glitter. 

• If the agent is facing the Wumpus, the agent can kill it, and Wumpus will cry horribly, which can 

be heard anywhere. 



PEAS description of Wumpus world: 

We have given PEAS description as below to explain the Wumpus world: 

Following are some basic facts about propositional logic: 

Performance measure: 

• If the agent emerges from the cave with the gold, he will receive 1000 bonus points. 

• If you are devoured by the Wumpus or fall into the pit, you will lose 1000 points. 

• For each action, you get a -1, and for using an arrow, you get a -10. 

• If either agent dies or emerges from the cave, the game is over. 

Environment: 

• A 4*4 grid of rooms. 

• Initially, the agent is in room square [1, 1], facing right. 

• Except for the first square [1,1], the locations of Wumpus and gold are picked at random. 

• Except for the initial square, every square of the cave has a 0.2 chance of being a pit. 

Actuators: 

• Left turn 

• Right turn 

• Move forward 

• Grab 

• Release 

• Shoot 

Sensors: 

• If the agent is in the same room as the Wumpus, he will smell the stench. (Not on a diagonal.) 

• If the agent is in the room directly adjacent to the Pit, he will feel a breeze. 

• The agent will notice the gleam in the room where the gold is located. 

• If the agent walks into a wall, he will feel the bump. 

• RWhen the Wumpus is shot, it lets out a horrifying scream that can be heard from anywhere in the 

cave. 

• These perceptions can be expressed as a five-element list in which each sensor will have its own 

set of indicators. 

• For instance, if an agent detects smell and breeze but not glitter, bump, or shout, it might be 

represented as [Stench, Breeze, None, None, None]. 

The Wumpus world Properties: 

• Partially observable: The Wumpus universe is only partially viewable because the agent can only 

observe the immediate environment, such as a nearby room. 

• Deterministic: It's deterministic because the world's result and outcome are already known. 

• Sequential: It is sequential because the order is critical. 

• Static: Wumpus and Pits are not moving, thus it is static. 

• Discrete: There are no discrete elements in the environment. 

• One agent: We only have one agent, and Wumpus is not regarded an agent, hence the environment 

is single agent. 



Exploring the Wumpus world: 

Now we will explore Wumpus world a bit and will explain how the agent will find its goal applying logical 

reasoning. 

Agent's First step: 

At first, the agent is in the first room, or square [1,1], and we all know that this room is safe for the agent, thus we 

will add the sign OK to the below diagram (a) to represent that room is safe. The agent is represented by the letter 

A, the breeze by the letter B, the glitter or gold by the letter G, the visited room by the letter V, the pits by the 

letter P, and the Wumpus by the letter W. 

 

Agent does not detect any wind or Stench in Room [1,1], indicating that the nearby squares are similarly in good 

condition. 

 

Agent's second Step: 

Now that the agent must go forward, it will either go to [1, 2] or [2, 1]. Let's say agent enters room [2, 1], 

where he detects a breeze, indicating Pit is present. Because the pit might be in [3, 1] or [2, 2], we'll add 

the sign P? to indicate that this is a Pit chamber. 

 

Now the agent will pause and consider his options before doing any potentially destructive actions. The 

agent will return to room [1, 1]. The agent visits the rooms [1,1] and [2,1], thus we'll use the symbol V to 

symbolize the squares he's been to. 

Agent's third step: 

The agent will now proceed to the room [1,2], which is fine. Agent detects a stink in the room [1,2], 

indicating the presence of a Wumpus nearby. However, according to the rules of the game, Wumpus 

cannot be in the room [1,1], and he also cannot be in [2,2]. (Agent had not detected any stench when he 

was at [2,1]). As a result, the agent infers that Wumpus is in the room [1,3], and there is no breeze at the 

moment, implying that there is no Pit and no Wumpus in [2,2]. So that's safe, and we'll designate it as OK, 

and the agent will advance [2,2] 



 

Agent's fourth step: 

Because there is no odor and no breeze in room [2,2], let's assume the agent decides to move to room 

[2,3]. Agent detects glitter in room [2,3], thus it should collect the gold and ascend out of the cave. 

Knowledge base for Wumpus world in Artificial intelligence 

We studied about the wumpus world and how a knowledge based agent evolves the world in the 

previous topic. Now, in this topic, we'll establish a knowledge base for the Wumpus world and use 

propositional logic to deduce some Wumpus-world facts. 

 

The agent begins his visit in the first square [1, 1], and we already know that the agent is secure in this 

room. We'll utilize certain rules and atomic propositions to create a knowledge base for the wumpus 

world. For each place in the wumpus world, we need the symbol [I j], where I stands for row location 

and j for column location. 

 



Atomic proposition variable for Wumpus world: 

• Let Pi,j be true if there is a Pit in the room [i, j]. 

• Let Bi,j be true if agent perceives breeze in [i, j], (dead or alive). 

• Let Wi,j be true if there is wumpus in the square[i, j]. 

• Let Si,j be true if agent perceives stench in the square [i, j]. 

• Let Vi,j be true if that square[i, j] is visited. 

• Let Gi,j be true if there is gold (and glitter) in the square [i, j]. 

• Let OKi,j be true if the room is safe. 

[Note: There will be 7*4*4= 122 propositional variables for a 4 * 4 square board. ] 

Representation of Knowledgebase for Wumpus world: 

The Simple KB for wumpus world when an agent moves from room [1, 1], to room [2,1] is as follows: 

 

We mentioned propositional variables for room[1,1] in the first row, indicating that the room has no 

wumpus (¬W11), no smell (¬S11), no Pit (¬P11), no breeze (¬P11), no gold (¬G11), has been visited (V11), 

and is safe (OK11). 

 

We mentioneds propositional variables for room [1,2] in the second row, indicating that there are no 

wumpus, stink, or breeze because an agent has not visited room [1,2], no Pit, and the room is safe. 

 

We mentioned a propositional variable for room[2,1] in the third row, which shows that there are no 

wumpus(¬W21), no stink (¬S21), no Pit (¬P21), Perceives breeze(B21), no glitter(¬G21), visited (V21), and 

the room is secure (OK21). 

LOGIC 

Logical AI involves representing knowledge of an agent’s world, its goals and the current situation by 

sentences in logic. The agent decides what to do by inferring that a certain action or course of action is 

appropriate to achieve the goals. 

PROPOSITIONAL LOGIC IN ARTIFICIAL INTELLIGENCE 

Propositional logic (PL) is the simplest form of logic where all the statements are made by propositions. 

A proposition is a declarative statement which is either true or false. It is a technique of knowledge 

representation in logical and mathematical form. 

Example: 

1. a) It is Sunday.   

2. b) The Sun rises from West (False proposition)   

3. c) 3+3= 7(False proposition)   



4. d) 5 is a prime number.   

o Propositional logic is also called Boolean logic as it works on 0 and 1. 

o In propositional logic, we use symbolic variables to represent the logic, and we can use any symbol for a 

representing a proposition, such A, B, C, P, Q, R, etc. 

o Propositions can be either true or false, but it cannot be both. 

o Propositional logic consists of an object, relations or function, and logical connectives. 

o These connectives are also called logical operators. 

o The propositions and connectives are the basic elements of the propositional logic. 

o Connectives can be said as a logical operator which connects two sentences. 

o A proposition formula which is always true is called tautology, and it is also called a valid sentence. 

o A proposition formula which is always false is called Contradiction. 

o A proposition formula which has both true and false values is called 

o Statements which are questions, commands, or opinions are not propositions such as "Where is Rohini", 

"How are you", "What is your name", are not propositions. 

Syntax of propositional logic: 

The syntax of propositional logic defines the allowable sentences for the knowledge representation. 

There are two types of Propositions: 

a. Atomic Propositions 

b. Compound propositions 

(a) Atomic Proposition: Atomic propositions are the simple propositions. It consists of a single proposition 

symbol. These are the sentences which must be either true or false. 

Example: 

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact.   

2. b) "The Sun is cold" is also a proposition as it is a false fact.    

(b)Compound proposition: Compound propositions are constructed by combining simpler or atomic 

propositions, using parenthesis and logical connectives. 

Example: 

1. a) "It is raining today, and street is wet."   

2. b) "Ankit is a doctor, and his clinic is in Mumbai."    

 

 

 



Logical Connectives: 

Logical connectives are used to connect two simpler propositions or representing a sentence logically. 

We can create compound propositions with the help of logical connectives. There are mainly five 

connectives, which are given as follows: 

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive literal or negative 

literal. 

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction. 

Example: Rohan is intelligent and hardworking. It can be written as, 

P= Rohan is intelligent, 

Q= Rohan is hardworking. → P∧ Q. 

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction, where P and Q are 

the propositions. 

Example: "Ritika is a doctor or Engineer", 

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q. 

4. Implication: A sentence such as P → Q, is called an implication. Implications are also known as if-then 

rules. It can be represented as 

            If it is raining, then the street is wet. 

        Let P= It is raining, and Q= Street is wet, so it is represented as P → Q 

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am breathing, then 

I am alive 

            P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q. 

 

SEMANTICS 

• The semantics defines the rules for determining the truth of a sentence with respect to a particular model. 

The semantics for propositional logic must specify how to compute the truth value of any sentence, given 

a model. This is done recursively. All sentences are constructed from atomic sentences and the five 



connectives;  therefore, we need to specify how to compute the truth of atomic sentences and how to 

compute the truth of sentences formed with each of the five connectives.  

• Atomic sentences are easy: 

                  • True is true in every model and False is false in every model. 

                  • The truth value of every other proposition symbol must be specified directly in the model.  

• Complex sentences, we have five rules, which hold for any subsentences P and Q in any model m (here 

“iff” means “if and only if”): 

                      • ￢P is true iff P is false in m. 

                      • P ∧ Q is true iff both P and Q are true in m. 

                      • P ∨ Q is true iff either P or Q is true in m. 

                      • P ⇒ Q is true unless P is true and Q is false in m. 

                      • P ⇔ Q is true iff P and Q are both true or both false in m. 

• The rules can also be expressed with truth tables that specify the truth value of a complex sentence for 

each possible assignment of truth values to its components. 

 

 

A simple knowledge base for WUMPUS problem 

 
Now that we have defined the semantics for propositional logic, we can construct a knowledge base for the 

wumpus world. We focus first on the immutable aspects of the wumpus world,leaving the mutable aspects for a 

later section. For now, we need the following symbols for each [x, y] location: 

• Px,y is true if there is a pit in [x, y]. 

• Wx,y is true if there is a wumpus in [x, y], dead or alive. 

• Bx,y is true if the agent perceives a breeze in [x, y]. 

• Sx,y is true if the agent perceives a stench in [x, y]. 

We label each sentence Ri so that we can refer to them: 

• There is no pit in [1,1]: 

R1 : ￢P1,1 . 

• A square is breezy if and only if there is a pit in a neighboring square. This has to be stated for each square; for 

now, we include just the relevant squares: 

R2 : B1,1 ⇔ (P1,2 ∨ P2,1) . 

R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) . 

• The preceding sentences are true in all wumpus worlds. Now we include the breeze percepts for the first two 

squares visited in the specific world the agent is in, leading up to the situation in Figure 7.3(b). 

R4 : ￢B1,1 . 

R5 : B2,1 . 

• Returning to our wumpus-world example, the relevant proposition symbols are B1,1, B2,1, P1,1, P1,2, P2,1, 

P2,2, and P3,1. With seven symbols, there are 27 =128 possible models; in three of these, KB is true (Figure 

7.9). In those three models, ￢P1,2 is true, hence there is no pit in [1,2]. On the other hand, P2,2 is true in 

two of the three models and false in one, so we cannot yet tell whether there is a pit in [2,2]. Figure 7.9 



reproduces in a more precise form the reasoning illustrated in Figure 7.5. A general algorithm for 

deciding entailment in propositional logic is shown in Figure 7.10. 

 

 

 

 

 

PROPOSITIONAL THEOREM PROVING 

Before we plunge into the details of theorem-proving algorithms, we will need some logical additional 

concepts related to entailment.  

The first concept is logical equivalence: two sentences α and β are logically equivalent if they are true 

in the same set of models. We write this as α ≡ β. For example, we can easily show (using truth tables) 

that P ∧ Q and Q ∧ P are logically equivalent; other equivalences are shown in Figure 7.11. 

 



 

The second concept we will need is validity. A sentence is valid if it is true in all models. For example, 

the sentence P ∨ ￢P is valid. Valid sentences are also known as tautologies—they are necessarily true. 

Because the sentence True is true in all models, every valid sentence is logically equivalent to True. 

From our definition , we can derive the deduction theorem, which was known to the ancient Greeks: 

                 For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid. 

 

 

The final concept we will need is satisfiability. SATISFIABILITY A sentence is satisfiable if it is true 

in, or satisfied by, some model. For example, the knowledge base given earlier, (R1 ∧ R2 ∧ R3 ∧ R4 ∧ 

R5), is satisfiable because there are three models in which it is true, as shown in Figure 7.9. Satisfiability 

can be checked by enumerating the possible models until one is found that satisfies the sentence. 

 

Inference and proofs 
 

This section covers inference rules that can be applied to derive a proof—a chain of conclusions that leads to the 

desired goal. The best-known rule is called Modus Ponens (Latin for mode that affirms) and is written 

. 

The notation means that, whenever any sentences of the form α ⇒ β and α are given, then the , entence β can be 

inferred.  

For example, if (WumpusAhead ∧WumpusAlive) ⇒ Shoot,and (WumpusAhead ∧ WumpusAlive) are given, then 

Shoot can be inferred. 

 

Another useful inference rule is And-Elimination, which says that, from a conjunction,any of the conjuncts can 

be inferred: 

. 

                For example, from (WumpusAhead ∧ WumpusAlive), WumpusAlive can be inferred. 

By considering the possible truth values of α and β, one can show easily that Modus Ponens and And-

Elimination are sound once and for all. These rules can then be used in any particular instances where 

they apply, generating sound inferences without the need for enumerating models. 

All of the logical equivalences in Figure 7.11 can be used as inference rules. For example, the 

equivalence for biconditional elimination yields the two inference rules 

 



 
Not all inference rules work in both directions like this. For example, we cannot run Modus Ponens in 

the opposite direction to obtain α ⇒ β and α from β. Let us see how these inference rules and 

equivalences can be used in the wumpus world.  

We start with the knowledge base containing R1 through R5 and show how to prove ￢P1,2, 

that is, there is no pit in [1,2].  

• First, we apply biconditional elimination to R2 to obtain 

                    R6: (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) . 

            Then we apply And-Elimination to R6 to obtain 

                   R7: ((P1,2 ∨ P2,1) ⇒ B1,1) . 

            Logical equivalence for contrapositives gives 

                   R8: (￢B1,1 ⇒ ￢(P1,2 ∨ P2,1)) . 

           Now we can apply Modus Ponens with R8 and the percept R4 (i.e., ￢B1,1), to obtain 

                    R9 : ￢(P1,2 ∨ P2,1) . 

          Finally, we apply De Morgan’s rule, giving the conclusion 

                       R10 : ￢P1,2 ∧ ￢P2,1 .  

           That is, neither [1,2] nor [2,1] contains a pit. 

 

 

A Resolution Algorithm 

A resolution algorithm is shown in Figure 7.12. First, (KB ∧ ￢α) is converted into CNF. Then, the 

resolution rule is applied to the resulting clauses. Each pair that contains complementary literals is 

resolved to produce a new clause, which is added to the set if it is not already present. The process 

continues until one of two things happens: 

 

 
 

Converting to CNF: 

 

A sentence expressed as a conjunction of clauses is said to be in conjunctive normal form or CNF (see 

Figure 7.14). We now describe a procedure for converting to CNF. We illustrate the procedure by 

converting the sentence B1,1 ⇔ (P1,2 ∨ P2,1) into CNF. The steps are as follows: 

 



 
 

Resolution Examples: 

 

(1)      

 
(2)          

       
 

Horn clauses and definite clauses 

 

Horn clause and definite clause are the forms of sentences, which enables knowledge base to use a more 

restricted and efficient inference algorithm 

Definite clause: A clause which is a disjunction of literals with exactly one positive literal is known as a 

definite clause or strict horn clause. 

Example: (~p V  q V k). 



Horn clause: A clause which is a disjunction of literals with at most one positive literal is known as 

horn clause. Hence all the definite clauses are horn clauses. 

• Example: (~p V ¬ q V k). It has only one positive literal k. 

Knowledge bases containing only definite clauses are interesting for three reasons: 

 

1. Every definite clause can be written as an implication whose premise is a conjunction of positive 

literals and whose conclusion is a single positive literal. (See Exercise 7.13.)  

For example, the definite clause (￢L1,1 ∨ ￢Breeze ∨ B1,1) can be written as the implication (L1,1 ∧ 

Breeze) ⇒ B1,1. In the implication form, the sentence is easier to understand: it says that if the agent is 

in [1,1] and there is a breeze, then [1,1] is breezy. In Horn form, the premise is called the body and the 

conclusion is called the head. A  sentence consisting of a single positive literal, such as L1,1, is called 

a fact. It too can  be written in implication form as True ⇒ L1,1, but it is simpler to write just L1,1. 

 

2. Inference with Horn clauses can be done through the forward chaining and backward chaining 

algorithms, which we explain next. Both of these algorithms are natural, in that the inference steps are 

obvious and easy for humans to follow. This type of inference is the basis for logic programming 

 

3. Deciding entailment with Horn clauses can be done in time that is linear in the size of the knowledge 

base—a pleasant surprise. 

 

Forward and Backward Chaining 

Forward chaining 

• It determines if a single proposition symbol q—the query-is entailed by a knowledge base of definite 

clauses. 

• It begins from known facts (positive literals) in the knowledge base. 

• If all the premises of an implication are known, then its conclusion is added to the set of known facts. 

• This process continues until the query q is added or until no further inferences can be made. 

 

Algorithm: 

• It determines if a single proposition  q―the query-is entailed by a knowledge base of definite clauses. 

• It begins from known facts (positive literals) in the knowledge base. 

If all the premises of an implication are known, then its conclusion is added to the set of known facts. 

• This process continues until the query q is added or until no further inferences can be made. 

P = Q 

 

 
 



 

• The best way to understand the algorithm is through an example and a picture. Figure 7.16(a) 

shows a simple knowledge base of Horn clauses with A and B as known facts.Figure 7.16(b) 

shows the same knowledge base drawn as an AND–OR graph .  

• In AND–OR graphs, multiple links joined by an arc indicate a conjunction—every link must be 

proved—while multiple links without an arc indicate a disjunction—any link can be proved. It is 

easy to see how forward chaining works in the graph.  

• The known leaves (here, A and B) are set, and inference propagates up the graph as far as 

possible. Wherever a conjunction appears, the propagation waits until all the conjuncts are 

known before proceeding. 

 

Backward chaining Algorithm: 

• If the query q is known to be true, then no work is needed. Otherwise, the algorithm finds those 

implications in the knowledge base whose conclusion is q. 

• If all the premises of one of those implications can be proved true (by backward chaining), then 

q is true. When applied to the query Q in Figure 7.16, it works back down the graph until it 

reaches a set of known facts, A and B, that forms the basis for a proof. 

 

 

 
Example(contd..) 

 

 
 

 

EFFECTIVE PROPOSITIONAL MODEL CHECKING 
 

• The algorithms we describe are for checking satisfiability: the SAT problem. (As noted earlier, 

testing entailment, α |= β, can be done by testing unsatisfiability of α ∧ ￢β.) We have already 

noted the connection between finding a satisfying model for a logical sentence and finding a 

solution for a constraint satisfaction problem, so it is perhaps not surprising that the two families 

of algorithms closely resemble the backtracking algorithms. 

 Two algorithms for the SAT problem(satisfiability problem) based on model checking: 



• a. based on backtracking 

• b. based on local hill-climbing search 

• (a) A complete backtracking algorithm 

• The first algorithm we consider is often called the Davis–Putnam algorithm. DPLL takes as input 

a sentence in conjunctive normal form—a set of 

• EARLY TERMINATION: The algorithm detects whether the sentence must be true or false, 

even with a partially completed model. A clause is true if any literal is true, even if the other 

literals do not yet have truth values; hence, the sentence as a whole could be judged true even 

before the model is complete. 

• For example, the sentence (A ∨ B) ∧ (A ∨ C) is true if A is true, regardless of the values of B 

and C. Similarly, a sentence is false if any clause is false, which occurs when each of its literals 

is false. Again, this can occur long before the model is complete. Early termination avoids 

examination of entire subtrees in the search space. 

• PURE SYMBOL HEURISTIC: A pure symbol is a symbol that always appears with the same 

“sign” in all clauses. For example, in the three clauses (A ∨ ￢B), (￢B ∨ ￢C), and (C ∨ A), the 

symbol A is pure because only the positive literal appears, B is pure because only the negative 

literal appears, and C is impure. It is easy to see that if a sentence has a model, then it has a 

model with the pure symbols assigned so as to make their literals true, because doing so can 

never make a clause false. 

• UNIT CLAUSE HEURISTIC: A unit clause was defined earlier as a clause with just one 

literal. In the context of DPLL, it also means clauses in which all literals but one are already 

assigned false by the model. For example, if the model contains B= true, then simplifies to , 

which is a unit clause. assigning one unit clause can create another unit clause. for example, 

when is set to false,(C V A) becomes a unit clause, causing true to be assigned to A. This 

“cascade” of forced assignments is called unit propagation. It resembles the process of forward 

chaining with definite clauses. If the CNF expression contains only definite clauses then DPLL 

essentially replicates forward chaining. 

 



The DPLL algorithm is shown in Figure 7.17, which gives the the essential skeleton of the search 

process.What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to large 

problems. It is interesting that most of these tricks are in fact rather general, and we have seen them 

before in other guises: 

1. Component analysis: As DPLL assigns truth values to variables, the set of clauses may become 

separated into disjoint subsets, called components, that share no unassigned variables. Given an 

efficient way to detect when this occurs, a solver can gain considerable speed by working on each 

component separately. 

2. Variable and value ordering : Our simple implementation of DPLL uses an arbitrary variable 

ordering and always tries the value true before false. The degree heuristic suggests choosing the 

variable that appears most frequently over all remaining clauses.  

3. Intelligent backtracking : Many problems that cannot be solved in hours of run time with 

chronological backtracking can be solved in seconds with intelligent backtracking that backs up all the 

way to the relevant point of conflict. All SAT solvers that do intelligent backtracking use some form of 

conflict clause learning to record conflicts so that they won’t be repeated later in the search . Usually a 

limited-size set of conflicts is kept, and rarely used ones are dropped. 

4. Random restarts: Sometimes a run appears not to be making progress. In this case, we can start over 

from the top of the search tree,rather than trying to continue. After restarting, different random choices 

are made. Clauses that are learned in the first run are retained after the restart and can help prune the 

search space. Restarting does not guarantee that a solution will be found faster, but it does reduce the 

variance on the time to solution.  

5. Clever indexing : The speedup methods used in DPLL itself, as well as the tricks used in modern 

solvers, require fast indexing of such things as “the set of clauses in which variable Xi appears as a 

positive literal.” This task is complicated by the fact that the algorithms are interested only in the clauses 

that have not yet been satisfied by previous assignments to variables, so the indexing structures must be 

updated dynamically as the computation proceeds. With these enhancements, modern solvers can handle 

problems with tens of millions of variables. They have revolutionized areas such as hardware 

verification and security protocol verification, which previously required laborious, hand-guided proofs. 

 

LOCAL SEARCH ALGORITHMS 

• We have seen several local search algorithms  like  HILL-CLIMBING  and SIMULATED-

ANNEALING  and Min max algorithm 

• These algorithms can be applied directly to satisfiability problems, provided that we choose the 

right evaluation function. Because the goal is to find an assignment that satisfies every clause, an 

evaluation function that counts the number of unsatisfied clauses will do the job. 

• One of the simplest and most effective algorithms to emerge from all this work is called 

WALKSAT (Figure 7.18). 

•  On every iteration, the algorithm picks an unsatisfied clause and picks a symbol in the clause to 

flip.  It chooses randomly between two ways to pick which symbol to flip:  

          (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in the new stated               

          (2) a “random walk” step that picks the symbol randomly.  

• When WALKSAT returns a model, the input sentence is indeed satisfiable, but when it returns 

failure, there are two possible causes: either the sentence is unsatisfiable or we need to give the 

algorithm more time. If we set max flips =∞ and p > 0, WALKSAT will eventually return a 

model (if one exists), because the random-walk steps will eventually hit 

 



 
 

AGENTS BASED ON PROPOSITIONAL LOGIC 

 

The first stage is to enable the agent to deduce the state of the world from its percept history to the 

greatest extent possible. This necessitates the creation of a thorough logical model of the 

consequences of actions. We also demonstrate how the agent may keep track of the world without 

having to return to the percept history for each inference. Finally, we demonstrate how the agent may 

develop plans that are guaranteed to meet its objectives using logical inference. 

Wumpus World’s Current State 

A logical agent works by deducing what to do given a knowledge base of words about the world. 

Axioms are the general information about how the universe works combine with percept sentences 

gleaned from the agent’s experience in a specific reality to form the knowledge base.  

 

Understanding Axioms 
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So far, everything has gone well. Let’s look at the agent’s perceptions now.  

 



 

Of course, axioms are required to allow the agent to keep track of fluents like L_{x, y}^{t}   . These 

fluents change as a result of the agent’s activities, thus we need to write down the wumpus world’s 

transition model as a series of logical statements. 

For starters, we’ll need proposition symbols for action occurrences. These symbols, like percepts, are 

indexed by time; for example, Forward 0 indicates that the agent performs the Forward action at time 0. 

The percept for a given time step occurs first, followed by the action for that time step, and then a 

transition to the next time step, according to the convention. 

We can attempt defining effect axioms that explain the outcome of an action at the following time step 

to describe how the world changes. If the agent is at [1,1]   facing east at time 0 and goes Forward, the 

consequence is that the agent is now in square [2, 1]   and no longer in [1, 1]  : 

 

 

Each potential time step, each of the 16 squares, and each of the four orientations would require a separate 

statement. For the other actions, we’d need comparable sentences: grab, shoot, climb, turnLeft, and turnRight. 

Assume the agent decides to travel Forward at time 0 and records this information in its knowledge base. The 

agent can now derive that it is in [2, 1] using the effect axiom in the above equation and the initial statements 

about the state at time 0. \operatorname{ASK}\left(K B, L_{2,1}^{1}\right)=\operatorname{true}, in other 

words. So far, everything has gone well. Unfortunately, the news isn’t so good elsewhere: if we 

\operatorname{ASK}\left(K B, \text { HaveArrow }^{1}\right), the result is false, which means the agent can’t 

show it still has the arrow or that it doesn’t! Because the effect axiom fails to explain what remains unchanged as 

a result of an action, the knowledge has been lost. The frame problem arises from the need to do so. Adding frame 

axioms explicitly expressing all the propositions that remain the same could be one answer to the frame problem. 

For each time t, we would have 

 

 

Despite the fact that the agent now knows it still retains the arrow after going ahead and that the 

wumpus hasn’t been killed or resurrected, the proliferation of frame axioms appears to be incredibly 

inefficient. The set of frame axioms in a universe with m distinct actions and n fluents will be of size O. 



 

 

 

 

 

 

 

 



 

Finally, ASK(KB,OK62,2)=true, so the square [2, 2] is OK to move into. In fact, given a sound and 

complete inference algorithm such as DPLL, the agent can answer any answerable question about which 

squares are OK—and can do so in just a few milliseconds for small-to-medium wumpus worlds. 

 


