

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using

First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification

and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects,

Events. Mental Events and Mental Objects, Reasoning Systems for Categories,

Reasoning with Default Information.

Inference in First-Order Logic

Inference in First-Order Logic is used to deduce new facts or sentences from existing sentences.

Before understanding the FOL inference rule, let's understand some basic terminologies used in FOL.

(a)Substitution:

Substitution is a fundamental operation performed on terms and formulas. It occurs in all inference

systems in first-order logic. The substitution is complex in the presence of quantifiers in FOL. If we

write F[a/x], so it refers to substitute a constant "a" in place of variable "x".

Note: First-order logic is capable of expressing facts about some or all objects in the universe.

(b)Equality:

First-Order logic does not only use predicate and terms for making atomic sentences but also uses

another way, which is equality in FOL. For this, we can use equality symbols which specify that the

two terms refer to the same object.

Example: Brother (John) = Smith.

As in the above example, the object referred by the Brother (John) is similar to the object referred

by Smith. The equality symbol can also be used with negation to represent that two terms are not the

same objects.

Example: ￢(x=y) which is equivalent to x ≠y.

FOL inference rules for quantifier:

As propositional logic we also have inference rules in first-order logic, so following are some basic

inference rules in FOL:

o Universal Generalization

o Universal Instantiation

o Existential Instantiation

o Existential introduction

1. Universal Generalization:

o Universal generalization is a valid inference rule which states that if premise P(c) is true for

any arbitrary element c in the universe of discourse, then we can have a conclusion as ∀ x P(x).

o It can be represented as: .

o This rule can be used if we want to show that every element has a similar property.

o In this rule, x must not appear as a free variable.

Example: Let's represent, P(c): "A byte contains 8 bits", so for ∀ x P(x) "All bytes contain 8 bits.",

it will also be true.

2. Universal Instantiation:

o Universal instantiation is also called as universal elimination or UI is a valid inference rule. It

can be applied multiple times to add new sentences.

o The new KB is logically equivalent to the previous KB.

o As per UI, we can infer any sentence obtained by substituting a ground term for the

variable.

o The UI rule state that we can infer any sentence P(c) by substituting a ground term c (a constant

within domain x) from ∀ x P(x) for any object in the universe of discourse.

o It can be represented as: .

Example:1.

IF "Every person like ice-cream"=> ∀x P(x) so we can infer that

"John likes ice-cream" => P(c)

Example: 2.

Let's take a famous example,

"All kings who are greedy are Evil." So let our knowledge base contains this detail as in the form of

FOL:

ADVERTISEMENT

∀x king(x) ∧ greedy (x) → Evil (x),

So from this information, we can infer any of the following statements using Universal Instantiation:

o King(John) ∧ Greedy (John) → Evil (John),

o King(Richard) ∧ Greedy (Richard) → Evil (Richard),

o King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)),

3. Existential Instantiation:

ADVERTISEMENT

o Existential instantiation is also called as Existential Elimination, which is a valid inference rule

in first-order logic.

o It can be applied only once to replace the existential sentence.

o The new KB is not logically equivalent to old KB, but it will be satisfiable if old KB was

satisfiable.

o This rule states that one can infer P(c) from the formula given in the form of ∃x P(x) for a new

constant symbol c.

o The restriction with this rule is that c used in the rule must be a new term for which P(c) is

true.

o It can be represented as:

Example:

From the given sentence: ∃x Crown(x) ∧ OnHead(x, John),

So we can infer: Crown(K) ∧ OnHead(K, John), as long as K does not appear in the knowledge

base.

o The above used K is a constant symbol, which is called Skolem constant.

o The Existential instantiation is a special case of Skolemization process.

4. Existential introduction

o An existential introduction is also known as an existential generalization, which is a valid

inference rule in first-order logic.

o This rule states that if there is some element c in the universe of discourse which has a property

P, then we can infer that there exists something in the universe which has the property P.

o It can be represented as:

o Example: Let's say that,

"Priyanka got good marks in English."

"Therefore, someone got good marks in English."

Generalized Modus Ponens Rule:

For the inference process in FOL, we have a single inference rule which is called Generalized Modus

Ponens. It is lifted version of Modus ponens.

Generalized Modus Ponens can be summarized as, " P implies Q and P is asserted to be true, therefore

Q must be True."

According to Modus Ponens, for atomic sentences pi, pi', q. Where there is a substitution θ such that

SUBST (θ, pi',) = SUBST(θ, pi), it can be represented as:

Example:

We will use this rule for Kings are evil, so we will find some x such that x is king, and x is greedy

so we can infer that x is evil.

1. Here let say, p1' is king(John) p1 is king(x)

2. p2' is Greedy(y) p2 is Greedy(x)

3. θ is {x/John, y/John} q is evil(x)

4. SUBST(θ,q).

Unification:

o Unification is a process of making two different logical atomic expressions identical by finding

a substitution. Unification depends on the substitution process.

o It takes two literals as input and makes them identical using substitution.

o Let Ψ1 and Ψ2 be two atomic sentences and 𝜎 be a unifier such that, Ψ1𝜎 = Ψ2𝜎, then it can be

expressed as UNIFY(Ψ1, Ψ2).

o Example: Find the MGU for Unify{King(x), King(John)}

Let Ψ1 = King(x), Ψ2 = King(John),

Substitution θ = {John/x} is a unifier for these atoms and applying this substitution, and both

expressions will be identical.

o The UNIFY algorithm is used for unification, which takes two atomic sentences and returns a

unifier for those sentences (If any exist).

o Unification is a key component of all first-order inference algorithms.

o It returns fail if the expressions do not match with each other.

o The substitution variables are called Most General Unifier or MGU.

E.g. Let's say there are two different expressions, P(x, y), and P(a, f(z)).

In this example, we need to make both above statements identical to each other. For this, we will

perform the substitution.

 P(x, y)......... (i)

 P(a, f(z))......... (ii)

o Substitute x with a, and y with f(z) in the first expression, and it will be represented as a/x and

f(z)/y.

o With both the substitutions, the first expression will be identical to the second expression and

the substitution set will be: [a/x, f(z)/y].

Conditions for Unification:

Following are some basic conditions for unification:

o Predicate symbol must be same, atoms or expression with different predicate symbol can never

be unified.

o Number of Arguments in both expressions must be identical.

o Unification will fail if there are two similar variables present in the same expression.

Unification Algorithm:

Algorithm: Unify(Ψ1, Ψ2)

Step. 1: If Ψ1 or Ψ2 is a variable or constant, then:

 a) If Ψ1 or Ψ2 are identical, then return NIL.

 b) Else if Ψ1is a variable,

 a. then if Ψ1 occurs in Ψ2, then return FAILURE

 b. Else return { (Ψ2/ Ψ1)}.

 c) Else if Ψ2 is a variable,

 a. If Ψ2 occurs in Ψ1 then return FAILURE,

 b. Else return {(Ψ1/ Ψ2)}.

 d) Else return FAILURE.

Step.2: If the initial Predicate symbol in Ψ1 and Ψ2 are not same, then return FAILURE.

Step. 3: IF Ψ1 and Ψ2 have a different number of arguments, then return FAILURE.

Step. 4: Set Substitution set(SUBST) to NIL.

Step. 5: For i=1 to the number of elements in Ψ1.

 a) Call Unify function with the ith element of Ψ1 and ith element of Ψ2, and put the result into S.

 b) If S = failure then returns Failure

 c) If S ≠ NIL then do,

 a. Apply S to the remainder of both L1 and L2.

 b. SUBST= APPEND(S, SUBST).

Step.6: Return SUBST.

Implementation of the Algorithm

Step.1: Initialize the substitution set to be empty.

Step.2: Recursively unify atomic sentences:

a. Check for Identical expression match.

b. If one expression is a variable vi, and the other is a term ti which does not contain variable vi,

then:

a. Substitute ti / vi in the existing substitutions

b. Add ti /vi to the substitution setlist.

c. If both the expressions are functions, then function name must be similar, and the

number of arguments must be the same in both the expression.

For each pair of the following atomic sentences find the most general unifier (If exist).

1. Find the MGU of {p(f(a), g(Y)) and p(X, X)}

 Sol: S0 => Here, Ψ1 = p(f(a), g(Y)), and Ψ2 = p(X, X)

 SUBST θ= {f(a) / X}

 S1 => Ψ1 = p(f(a), g(Y)), and Ψ2 = p(f(a), f(a))

 SUBST θ= {f(a) / g(y)}, Unification failed.

Unification is not possible for these expressions.

2. Find the MGU of {p(b, X, f(g(Z))) and p(Z, f(Y), f(Y))}

Here, Ψ1 = p(b, X, f(g(Z))) , and Ψ2 = p(Z, f(Y), f(Y))

S0 => { p(b, X, f(g(Z))); p(Z, f(Y), f(Y))}

SUBST θ={b/Z}

S1 => { p(b, X, f(g(b))); p(b, f(Y), f(Y))}

SUBST θ={f(Y) /X}

S2 => { p(b, f(Y), f(g(b))); p(b, f(Y), f(Y))}

SUBST θ= {g(b) /Y}

S2 => { p(b, f(g(b)), f(g(b)); p(b, f(g(b)), f(g(b))} Unified Successfully.

And Unifier = { b/Z, f(Y) /X , g(b) /Y}.

3. Find the MGU of {p (X, X), and p (Z, f(Z))}

Here, Ψ1 = {p (X, X), and Ψ2 = p (Z, f(Z))

S0 => {p (X, X), p (Z, f(Z))}

SUBST θ= {X/Z}

 S1 => {p (Z, Z), p (Z, f(Z))}

SUBST θ= {f(Z) / Z}, Unification Failed.

Hence, unification is not possible for these expressions.

4. Find the MGU of UNIFY(prime (11), prime(y))

Here, Ψ1 = {prime(11) , and Ψ2 = prime(y)}

S0 => {prime(11) , prime(y)}

SUBST θ= {11/y}

S1 => {prime(11) , prime(11)} , Successfully unified.

 Unifier: {11/y}.

5. Find the MGU of Q(a, g(x, a), f(y)), Q(a, g(f(b), a), x)}

Here, Ψ1 = Q(a, g(x, a), f(y)), and Ψ2 = Q(a, g(f(b), a), x)

S0 => {Q(a, g(x, a), f(y)); Q(a, g(f(b), a), x)}

SUBST θ= {f(b)/x}

S1 => {Q(a, g(f(b), a), f(y)); Q(a, g(f(b), a), f(b))}

SUBST θ= {b/y}

S1 => {Q(a, g(f(b), a), f(b)); Q(a, g(f(b), a), f(b))}, Successfully Unified.

Unifier: [a/a, f(b)/x, b/y].

ADVERTISEMENT

6. UNIFY(knows(Richard, x), knows(Richard, John))

Here, Ψ1 = knows(Richard, x), and Ψ2 = knows(Richard, John)

S0 => { knows(Richard, x); knows(Richard, John)}

SUBST θ= {John/x}

S1 => { knows(Richard, John); knows(Richard, John)}, Successfully Unified.

Unifier: {John/x}.

Resolution in FOL

Resolution is a theorem proving technique that proceeds by building refutation proofs, i.e., proofs by

contradictions. It was invented by a Mathematician John Alan Robinson in the year 1965.

Resolution is used, if there are various statements are given, and we need to prove a conclusion of those

statements. Unification is a key concept in proofs by resolutions. Resolution is a single inference rule

which can efficiently operate on the conjunctive normal form or clausal form.

Clause: Disjunction of literals (an atomic sentence) is called a clause. It is also known as a unit clause.

Conjunctive Normal Form: A sentence represented as a conjunction of clauses is said to

be conjunctive normal form or CNF.

Note: To better understand this topic, firstly learns the FOL in AI.

The resolution inference rule:

The resolution rule for first-order logic is simply a lifted version of the propositional rule. Resolution

can resolve two clauses if they contain complementary literals, which are assumed to be standardized

apart so that they share no variables.

Where li and mj are complementary literals.

This rule is also called the binary resolution rule because it only resolves exactly two literals.

Example:

We can resolve two clauses which are given below:

[Animal (g(x) V Loves (f(x), x)] and [￢ Loves(a, b) V ￢Kills(a, b)]

Where two complimentary literals are: Loves (f(x), x) and ￢ Loves (a, b)

These literals can be unified with unifier θ= [a/f(x), and b/x] , and it will generate a resolvent clause:

[Animal (g(x) V ￢ Kills(f(x), x)].

Steps for Resolution:

1. Conversion of facts into first-order logic.

2. Convert FOL statements into CNF

3. Negate the statement which needs to prove (proof by contradiction)

4. Draw resolution graph (unification).

To better understand all the above steps, we will take an example in which we will apply resolution.

Example:

a. John likes all kind of food.

b. Apple and vegetable are food

c. Anything anyone eats and not killed is food.

d. Anil eats peanuts and still alive

e. Harry eats everything that Anil eats.

Prove by resolution that:

f. John likes peanuts.

Step-1: Conversion of Facts into FOL

In the first step we will convert all the given statements into its first order logic.

Step-2: Conversion of FOL into CNF

In First order logic resolution, it is required to convert the FOL into CNF as CNF form makes easier for

resolution proofs.

o Eliminate all implication (→) and rewrite

a. ∀x ¬ food(x) V likes(John, x)

b. food(Apple) Λ food(vegetables)

c. ∀x ∀y ¬ [eats(x, y) Λ ¬ killed(x)] V food(y)

d. eats (Anil, Peanuts) Λ alive(Anil)

e. ∀x ¬ eats(Anil, x) V eats(Harry, x)

f. ∀x¬ [¬ killed(x)] V alive(x)

g. ∀x ¬ alive(x) V ¬ killed(x)

h. likes(John, Peanuts).

o Move negation (¬)inwards and rewrite

a. ∀x ¬ food(x) V likes(John, x)

b. food(Apple) Λ food(vegetables)

c. ∀x ∀y ¬ eats(x, y) V killed(x) V food(y)

d. eats (Anil, Peanuts) Λ alive(Anil)

e. ∀x ¬ eats(Anil, x) V eats(Harry, x)

f. ∀x ¬killed(x)] V alive(x)

g. ∀x ¬ alive(x) V ¬ killed(x)

h. likes(John, Peanuts).

o Rename variables or standardize variables

a. ∀x ¬ food(x) V likes(John, x)

b. food(Apple) Λ food(vegetables)

c. ∀y ∀z ¬ eats(y, z) V killed(y) V food(z)

d. eats (Anil, Peanuts) Λ alive(Anil)

e. ∀w¬ eats(Anil, w) V eats(Harry, w)

f. ∀g ¬killed(g)] V alive(g)

g. ∀k ¬ alive(k) V ¬ killed(k)

h. likes(John, Peanuts).

o Eliminate existential instantiation quantifier by elimination.

In this step, we will eliminate existential quantifier ∃, and this process is known as Skolemization. But

in this example problem since there is no existential quantifier so all the statements will remain same in

this step.

o Drop Universal quantifiers.

In this step we will drop all universal quantifier since all the statements are not implicitly quantified so

we don't need it.

a. ¬ food(x) V likes(John, x)

b. food(Apple)

c. food(vegetables)

d. ¬ eats(y, z) V killed(y) V food(z)

e. eats (Anil, Peanuts)

f. alive(Anil)

g. ¬ eats(Anil, w) V eats(Harry, w)

h. killed(g) V alive(g)

i. ¬ alive(k) V ¬ killed(k)

j. likes(John, Peanuts).

Note: Statements "food(Apple) Λ food(vegetables)" and "eats (Anil, Peanuts) Λ alive(Anil)" can be written in

two separate statements.

o Distribute conjunction ∧ over disjunction ¬.

This step will not make any change in this problem.

Step-3: Negate the statement to be proved

In this statement, we will apply negation to the conclusion statements, which will be written as

¬likes(John, Peanuts)

Step-4: Draw Resolution graph:

Now in this step, we will solve the problem by resolution tree using substitution. For the above problem,

it will be given as follows:

Hence the negation of the conclusion has been proved as a complete contradiction with the given set of

statements.

Explanation of Resolution graph:

o In the first step of resolution graph, ¬likes(John, Peanuts) , and likes(John, x) get resolved(canceled) by

substitution of {Peanuts/x}, and we are left with ¬ food(Peanuts)

o In the second step of the resolution graph, ¬ food(Peanuts) , and food(z) get resolved (canceled) by

substitution of { Peanuts/z}, and we are left with ¬ eats(y, Peanuts) V killed(y) .

o In the third step of the resolution graph, ¬ eats(y, Peanuts) and eats (Anil, Peanuts) get resolved by

substitution {Anil/y}, and we are left with Killed(Anil) .

o In the fourth step of the resolution graph, Killed(Anil) and ¬ killed(k) get resolve by

substitution {Anil/k}, and we are left with ¬ alive(Anil) .

o In the last step of the resolution graph ¬ alive(Anil) and alive(Anil) get resolved.

Forward Chaining and backward chaining in AI

In artificial intelligence, forward and backward chaining is one of the important topics, but before

understanding forward and backward chaining lets first understand that from where these two terms

came.

Inference engine:

The inference engine is the component of the intelligent system in artificial intelligence, which applies

logical rules to the knowledge base to infer new information from known facts. The first inference engine

was part of the expert system. Inference engine commonly proceeds in two modes, which are:

a. Forward chaining

b. Backward chaining

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables knowledge base to use a more

restricted and efficient inference algorithm. Logical inference algorithms use forward and backward

chaining approaches, which require KB in the form of the first-order definite clause.

Definite clause: A clause which is a disjunction of literals with exactly one positive literal is known as

a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one positive literal is known as

horn clause. Hence all the definite clauses are horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

It is equivalent to p ∧ q → k.

(a) Forward Chaining

Forward chaining is also known as a forward deduction or forward reasoning method when using an

inference engine. Forward chaining is a form of reasoning which start with atomic sentences in the

knowledge base and applies inference rules (Modus Ponens) in the forward direction to extract more

data until a goal is reached.

The Forward-chaining algorithm starts from known facts, triggers all rules whose premises are satisfied,

and add their conclusion to the known facts. This process repeats until the problem is solved.

Properties of Forward-Chaining:

o It is a down-up approach, as it moves from bottom to top.

o It is a process of making a conclusion based on known facts or data, by starting from the initial state and

reaches the goal state.

o Forward-chaining approach is also called as data-driven as we reach to the goal using available data.

o Forward -chaining approach is commonly used in the expert system, such as CLIPS, business, and

production rule systems.

Consider the following famous example which we will use in both approaches:

Example:

"As per the law, it is a crime for an American to sell weapons to hostile nations. Country A, an

enemy of America, has some missiles, and all the missiles were sold to it by Robert, who is an

American citizen."

Prove that "Robert is criminal."

To solve the above problem, first, we will convert all the above facts into first-order definite clauses,

and then we will use a forward-chaining algorithm to reach the goal.

Facts Conversion into FOL:

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and r are variables)

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

o Country A has some missiles. ?p Owns(A, p) ∧ Missile(p). It can be written in two definite clauses by

using Existential Instantiation, introducing new Constant T1.

Owns(A, T1) (2)

Missile(T1) (3)

o All of the missiles were sold to country A by Robert.

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missiles are weapons.

Missile(p) → Weapons (p) (5)

o Enemy of America is known as hostile.

Enemy(p, America) →Hostile(p) (6)

o Country A is an enemy of America.

Enemy (A, America) (7)

o Robert is American

American(Robert). (8)

Forward chaining proof:

Step-1:

In the first step we will start with the known facts and will choose the sentences which do not have

implications, such as: American(Robert), Enemy(A, America), Owns(A, T1), and Missile(T1). All

these facts will be represented as below.

Step-2:

At the second step, we will see those facts which infer from available facts and with satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the first iteration.

ADVERTISEMENT

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which infers from the

conjunction of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers from Rule-(7).

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, r/A}, so we can

add Criminal(Robert) which infers all the available facts. And hence we reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

(b) Backward Chaining:

Backward-chaining is also known as a backward deduction or backward reasoning method when using

an inference engine. A backward chaining algorithm is a form of reasoning, which starts with the goal

and works backward, chaining through rules to find known facts that support the goal.

Properties of backward chaining:

o It is known as a top-down approach.

o Backward-chaining is based on modus ponens inference rule.

o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the facts true.

o It is called a goal-driven approach, as a list of goals decides which rules are selected and used.

o Backward -chaining algorithm is used in game theory, automated theorem proving tools, inference

engines, proof assistants, and various AI applications.

o The backward-chaining method mostly used a depth-first search strategy for proof.

Example:

In backward-chaining, we will use the same above example, and will rewrite all the rules.

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

Owns(A, T1) (2)

o Missile(T1)

o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missile(p) → Weapons (p) (5)

o Enemy(p, America) →Hostile(p) (6)

o Enemy (A, America) (7)

o American(Robert). (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert), and then infer

further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact, we will infer other facts, and at last,

we will prove those facts true. So our goal fact is "Robert is Criminal," so following is the predicate of

it.

Step-2:

At the second step, we will infer other facts form goal fact which satisfies the rules. So as we can see in

Rule-1, the goal predicate Criminal (Robert) is present with substitution {Robert/P}. So we will add all

the conjunctive facts below the first level and will replace p with Robert.

Here we can see American (Robert) is a fact, so it is proved here.

Step-3:t At step-3, we will extract further fact Missile(q) which infer from Weapon(q), as it satisfies

Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q.

Step-4:

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r) which satisfies

the Rule- 4, with the substitution of A in place of r. So these two statements are proved here.

Step-5:

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies Rule- 6. And

hence all the statements are proved true using backward chaining.

KNOWLEDGE REPRESENTATION

ONTOLOGICAL ENGINEERING

Concepts such as Events, Time, Physical Objects, and Beliefs— that occur in many different domains.

Representing these abstract concepts is sometimes called ontological engineering.

The general framework of concepts is called an upper ontology because of the convention of drawing

graphs with the general concepts at the top and the more specific concepts below them, as in Figure

12.1.

Categories and Objects

The organization of objects into categories is a vital part of knowledge representation. Although

interaction with the world takes place at the level of individual objects, much reasoning takes place at

the level of categories. For example, a shopper would normally have the goal of buying a basketball,

rather than a particular basketball such as BB9

There are two choices for representing categories in first-order logic: predicates and objects.

That is, we can use the predicate Basketball (b), or we can reify1 the category as an object, Basketballs.

We could then say Member(b, Basketballs), which we will abbreviate as b∈ Basketballs, to say that b

is a member of the category of basketballs. We say Subset(Basketballs,

Balls), abbreviated as Basketballs ⊂ Balls, to say that Basketballs is a subcategory of Balls.

Categories serve to organize and simplify the knowledge base through inheritance. If we say

that all instances of the category Food are edible, and if we assert that Fruit is a subclass of Food and

Apples is a subclass of Fruit , then we can infer that every apple is edible. We say that the individual

apples inherit the property of edibility, in this case from their membership in the Food category.

First-order logic makes it easy to state facts about categories, either by relating objects to categories or

by quantifying over their members. Here are some types of facts, with examples of each:

• An object is a member of a category.

BB9 ∈ Basketballs

• A category is a subclass of another category.

Basketballs ⊂ Balls

• All members of a category have some properties.

(x∈ Basketballs) ⇒ Spherical (x)

• Members of a category can be recognized by some properties.

Orange(x) ∧ Round (x) ∧ Diameter(x)=9.5 ∧ x∈ Balls ⇒ x∈ Basketballs

• A category as a whole has some properties.

Dogs ∈DomesticatedSpecies

Notice that because Dogs is a category and is a member of DomesticatedSpecies , the latter must be a

category of categories.

Categories can also be defined by providing necessary and sufficient conditions for membership. For

example, a bachelor is an unmarried adult male:

x∈ Bachelors ⇔ Unmarried(x) ∧ x∈ Adults ∧ x∈Males

Physical Composition

We use the general PartOf relation to say that one thing is part of another. Objects can be grouped into

part of hierarchies, reminiscent of the Subset hierarchy:

PartOf (Bucharest , Romania) PartOf (Romania, EasternEurope) PartOf (EasternEurope, Europe)

PartOf (Europe, Earth)

The PartOf relation is transitive and reflexive; that is, PartOf (x, y) ∧ PartOf (y, z) ⇒ PartOf (x, z) PartOf

(x, x)

Therefore, we can conclude PartOf (Bucharest , Earth).

For example, if the apples are Apple1, Apple2, and Apple3, then

BunchOf ({Apple1,Apple2,Apple3})

denotes the composite object with the three apples as parts (not elements).

We can define BunchOf in terms of the PartOf relation. Obviously, each element of s is part of

BunchOf (s):

∀x x∈ s ⇒ PartOf (x, BunchOf (s))

Furthermore, BunchOf (s) is the smallest object satisfying this condition. In other words, BunchOf

(s) must be part of any object that has all the elements of s as parts:

∀ y [∀x x∈ s ⇒ PartOf (x, y)] ⇒ PartOf (BunchOf (s), y)

Measurements

In both scientific and commonsense theories of the world, objects have height, mass, cost, and so on.
The values that we assign for these properties are called measures.

Length(L1)=Inches(1.5)=Centimeters(3.81)

Conversion between units is done by equating multiples of one unit to another:

Centimeters(2.54 ×d)=Inches(d)

Similar axioms can be written for pounds and kilograms, seconds and days, and dollars and cents.

Measures can be used to describe objects as follows:

Diameter (Basketball12)=Inches(9.5)

ListPrice(Basketball12)=$(19)

d∈ Days ⇒ Duration(d)=Hours(24)

Time Intervals

Event calculus opens us up to the possibility of talking about time, and time intervals. We will consider

two kinds of time intervals: moments and extended intervals. The distinction is that only moments have

zero duration:

Partition({Moments,ExtendedIntervals}, Intervals)

i∈Moments ⇔ Duration(i)=Seconds(0)

The functions Begin and End pick out the earliest and latest moments in an interval, and the function
Time delivers the point on the time scale for a moment. The function Duration gives the difference

between the end time and the start time.

Interval (i) ⇒ Duration(i)=(Time(End(i)) − Time(Begin(i))) Time(Begin(AD1900))=Seconds(0)

Time(Begin(AD2001))=Seconds(3187324800) Time(End(AD2001))=Seconds(3218860800)

Duration(AD2001)=Seconds(31536000)

Two intervals Meet if the end time of the first equals the start time of the second. The complete set of

interval relations, as proposed by Allen (1983), is shown graphically in Figure 12.2 and logically below:

Meet(i,j) ⇔ End(i)=Begin(j) Before(i,j) ⇔ End(i) < Begin(j) After (j,i) ⇔ Before(i, j)

During(i,j) ⇔ Begin(j) < Begin(i) < End(i) < End(j) Overlap(i,j) ⇔ Begin(i) < Begin(j) < End(i) < End(j)

Begins(i,j) ⇔ Begin(i) = Begin(j)

Finishes(i,j) ⇔ End(i) = End(j)

Equals(i,j) ⇔ Begin(i) = Begin(j) ∧ End(i) = End(j)

EVENTS

Event calculus reifies fluents and events. The fluent At(Shankar , Berkeley) is an object that refers to the

fact of Shankar being in Berkeley, but does not by itself say anything about whether it is true. To assert

that a fluent is actually true at some point in time we use the predicate T, as in T(At(Shankar

, Berkeley), t).

Events are described as instances of event categories. The event E1 of Shankar flying from San

Francisco to Washington, D.C. is described as

E1 ∈ Flyings ∧ Flyer (E1, Shankar) ∧ Origin(E1, SF) ∧ Destination(E1,DC) we can define an

alternative three-argument version of the category of flying events and say E1 ∈ Flyings(Shankar ,

SF,DC)

We then use Happens(E1, i) to say that the event E1 took place over the time interval i, and we say the

same thing in functional form with Extent(E1)=i. We represent time intervals by a (start, end)

pair of times; that is, i = (t1, t2) is the time interval that starts at t1 and ends at t2. The complete set of

predicates for one version of the event calculus is

T(f, t) Fluent f is true at time t

Happens(e, i) Event e happens over the time interval i

Initiates(e, f, t) Event e causes fluent f to start to hold at time t Terminates(e, f, t) Event e causes fluent

f to cease to hold at time t Clipped(f, i) Fluent f ceases to be true at some point during time interval i

Restored (f, i) Fluent f becomes true sometime during time interval i

We assume a distinguished event, Start , that describes the initial state by saying which fluents are
initiated or terminated at the start time. We define T by saying that a fluent holds at a point in time if the

fluent was initiated by an event at some time in the past and was not made false (clipped) by an

intervening event. A fluent does not hold if it was terminated by an event and not made true (restored) by

another event. Formally, the axioms are:

Happens(e, (t1, t2)) ∧ Initiates(e, f, t1) ∧ ￢Clipped(f, (t1, t)) ∧ t1 < t ⇒T(f, t) Happens(e, (t1, t2)) ∧

Terminates(e, f, t1)∧ ￢Restored (f, (t1, t)) ∧ t1 < t ⇒￢T(f, t) where Clipped and Restored are defined

by

Clipped(f, (t1, t2)) ⇔ ∃ e, t, t3 Happens(e, (t, t3)) ∧ t1 ≤ t < t2 ∧ Terminates(e, f, t)

Restored (f, (t1, t2)) ⇔ ∃ e, t, t3 Happens(e, (t, t3)) ∧ t1 ≤ t < t2 ∧ Initiates(e, f, t)

MENTAL EVENTS AND MENTAL OBJECTS

What we need is a model of the mental objects that are in someone’s head (or something’s

knowledge base) and of the mental processes that manipulate those mental objects. The model does not

have to be detailed. We do not have to be able to predict how many milliseconds it will take for a

particular agent to make a deduction. We will be happy just to be able to conclude that mother knows

whether or not she is sitting.

We begin with the propositional attitudes that an agent can have toward mental objects:

attitudes such as Believes, Knows, Wants, Intends, and Informs. The difficulty is that these attitudes do

not behave like “normal” predicates. For example, suppose we try to assert that Lois knows that

Superman can fly:

Knows(Lois, CanFly(Superman))

One minor issue with this is that we normally think of CanFly(Superman) as a sentence, but here it

appears as a term. That issue can be patched up just be reifying CanFly(Superman); making it a fluent.

A more serious problem is that, if it is true that Superman is Clark Kent, then we must conclude that Lois

knows that Clark can fly:

(Superman = Clark) ∧ Knows(Lois , CanFly(Superman)) |= Knows(Lois, CanFly(Clark)) Modal logic

is designed to address this problem. Regular logic is concerned with a single modality, the modality

of truth, allowing us to express “P is true.” Modal logic includes special modal operators that take

sentences (rather than terms) as arguments. For example, “A knows P” is represented with the

notation KAP, where K is the modal operator for knowledge. It takes two arguments, an agent

(written as the subscript) and a sentence. The syntax of modal logic is the same

as first-order logic, except that sentences can also be formed with modal operators.

In first-order logic a model contains a set of objects and an interpretation that maps each name to

the appropriate object, relation, or function. In modal logic we want to be able to consider both the

possibility that Superman’s secret identity is Clark and that it isn’t. Therefore, we will need a more

complicated model, one that consists of a collection of possible worlds rather than just one true world.

The worlds are connected in a graph by accessibility relations, one relation for each modal operator.

We say that world w1 is accessible from world w0 with respect to the modal operator KA if everything

in w1 is consistent with what A knows in w0, and we write this as Acc(KA,w0,w1). In diagrams such as

Figure 12.4 we show accessibility as an arrow between possible worlds.

In general, a knowledge atom KAP is true in world w if and only if P is true in every world

accessible from w. The truth of more complex sentences is derived by recursive application of this
rule and the normal rules of first-order logic. That means that modal logic can be used to reason about

nested knowledge sentences: what one agent knows about another agent’s knowledge. For example,
we can say that, even though Lois doesn’t know whether Superman’s secret identity is Clark Kent,

she does know that Clark knows:

KLois [KClark Identity(Superman, Clark) ∨ KClark￢Identity(Superman, Clark)]

Figure 12.4 shows some possible worlds for this domain, with accessibility relations for Lois

and Superman.

In the TOP-LEFT diagram, it is common knowledge that Superman knows his own identity, and

neither he nor Lois has seen the weather report. So in w0 the worlds w0 and w2 are accessible to

Superman; maybe rain is predicted, maybe not. For Lois all four worlds are accessible from each

other; she doesn’t know anything about the report or if Clark is Superman. But she does know that
Superman knows whether he is Clark, because in every world that is accessible to Lois, either Superman

knows I, or he knows ￢I. Lois does not know which is the case, but either way she knows Superman

knows.

In the TOP-RIGHT diagram it is common knowledge that Lois has seen the weather report. So

in w4 she knows rain is predicted and in w6 she knows rain is not predicted. Superman does not

know the report, but he knows that Lois knows, because in every world that is accessible to him, either

she knows R or she knows ￢R.

In the BOTTOM diagram we represent the scenario where it is common knowledge that
Superman knows his identity, and Lois might or might not have seen the weather report. We represent

this by combining the two top scenarios, and adding arrows to show that Superman does not know

which scenario actually holds. Lois does know, so we don’t need to add any arrows for her. In w0

Superman still knows I but not R, and now he does not know whether Lois knows R. From what

Superman knows, he might be in w0 or w2, in which case Lois does not know whether R is true, or

he could be in w4, in which case she knows R, or w6, in which case she knows ￢R.

REASONING SYSTEMS FOR CATEGORIES

This section describes systems specially designed for organizing and reasoning with categories. There

are two closely related families of systems: semantic networks provide graphical aids for visualizing a

knowledge base and efficient algorithms for inferring properties of an object on the basis of its category

membership; and description logics provide a formal language for constructing and combining

category definitions and efficient algorithms for deciding subset and superset relationships between

categories.

SEMANTIC NETWORKS

There are many variants of semantic networks, but all are capable of representing individual objects,

categories of objects, and relations among objects. A typical graphical notation displays object or

category names in ovals or boxes, and connects them with labeled links. For example, Figure 12.5 has

a MemberOf link between Mary and FemalePersons , corresponding to the logical assertion Mary

∈FemalePersons ; similarly, the SisterOf link between Mary and John corresponds to the

assertion SisterOf (Mary, John). We can connect categories using SubsetOf links, and so on. We

know that persons have female persons as mothers, so can we draw a HasMother link from Persons to

FemalePersons? The answer is no, because HasMother is a relation between a person and his or her

mother, and categories do not have mothers. For this reason, we have used a special notation—the

double-boxed link—in Figure 12.5. This link asserts that

∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈ FemalePersons]

We might also want to assert that persons have two legs—that is,

∀x x∈ Persons ⇒ Legs(x, 2)

The semantic network notation makes it convenient to perform inheritance reasoning . For example, by

virtue of being a person, Mary inherits the property of having two legs. Thus, to find out how many legs

Mary has, the inheritance algorithm follows the MemberOf link from Mary to the category she belongs

to, and then follows SubsetOf links up the hierarchy until it finds a category for which there is a boxed

Legs link—in this case, the Persons category.

Inheritance becomes complicated when an object can belong to more than one category or when a

category can be a subset of more than one other category; this is called multiple inheritance.

The drawback of semantic network notation, compared to first-order logic: the fact that links between

bubbles represent only binary relations. For example, the sentence Fly(Shankar , NewYork, NewDelhi

,Yesterday) cannot be asserted directly in a semantic network. Nonetheless, we can

obtain the effect of n-ary assertions by reifying the proposition itself as an event belonging to an

appropriate event category. Figure 12.6 shows the semantic network structure for this particular event.

Notice that the restriction to binary relations forces the creation of a rich ontology of reified concepts.

One of the most important aspects of semantic networks is their ability to represent default values for

categories. Examining Figure 12.5 carefully, one notices that John has one leg, despite the fact that he

is a person and all persons have two legs. In a strictly logical KB, this would be a contradiction, but in a

semantic network, the assertion that all persons have two legs has only default status; that is, a person is

assumed to have two legs unless this is contradicted by more specific information.

3.1.1.1 Advantages of Semantic Networks

1. Simplicity and transparency of the inference processes.

2. Designers can build large network and still have a good idea about what queries will be

efficient, because

(a) it is easy to visualize the steps that the inference procedure will go through and

(b) in some cases the query language is so simple that difficult queries cannot be posed.

3. In cases where the expressive power proves to be too limiting, many semantic network systems

provide for procedural attachment to fill in the gaps. Procedural attachment is a technique

whereby a query about a certain relation results in a call to a special procedure designed for

that relation rather than a general inference algorithm.

4. One of the most important aspects of semantic networks is their ability to represent

default values for categories. The default is overridden by the more specific value.

Description logics:

Description logics are notations that are designed to make it easier to describe definitions and

properties of categories. Description logic systems evolved from semantic networks in response to

retain the emphasis on taxonomic structure. The principal inference tasks for description logics are

1. Subsumption - checking if one category is a subset of another by comparing their definitions

2. Classification 3 checking whether an object belongs to a category.

3. Consistency - whether the membership criteria are logically satisfiable.

The CLASSIC language is a typical description logic. For example, to say that bachelors are

unmarried adult males we would write, Bachelor = And(Unmarried, Adult ,Male) . The

equivalent in first-order logic would be Bachelor (x) ⇔ Unmarried(x) 𝖠 Adult(x) 𝖠 Male(x)

The description logic effectively allows direct logical operations on predicates, rather

than sentences joined by connectives.

Figure 10.11 Syntax of CLASSIC Language

REASONING WITH DEFAULT INFORMATION

A simple example of an assertion with default status is people have two legs. This default can

be overridden by more specific information, such as that Long John Silver has one leg. We saw that

the inheritance mechanism in semantic networks implements the overriding of defaults in a simple

and natural way.

Open and Closed Worlds

If a university advertises 5Courses offered are CS01, CS02, CS03 and EE01”, the answer for

the question 5How many courses are offered by the university?” is 5four. But in first order logic the

answer is 5at least four and at most infinity”. The reason is that, the assertion do not deny the

possibility that the unmentioned courses are also offered. This example shows that database and

human communication are different from first order logic.

1. Database assumes information provided is complete. So the atomic statements not asserted to

be true are assumed to be false. This is Closed World Assumption (CWA)

2. Database assume distinct names refer to distinct objects. This is called Unique Names

Assumption (UNA).

Horn clause use the idea of negation as failure. The idea is that negative literal, not P, can be

proved true just in case the proof of P fails. Consider the assertion P is not Q. This has two minimal

models, P and Q. An alternative idea is stable model, which is a minimal model where every atom in

the model has a justification, with H reduct with respect to M. The reduct of P not Q with respect

to P is a minimal model { P }. Therefore P is a stable model.

Circumscription and default logic

We have seen natural reasoning processes violate the monotonicity property of logic.

Monotonicity requires all entailed sentences to remain entailed after new sentences are added to the

KB. That is, if KB |= α then KB 𝖠 β |= α. Under the closed-world assumption, if a proposition α is

not mentioned in KB then KB |= ￢α, but KB 𝖠 α |= α.

These failures of monotonicity are widespread in common sense reasoning. Because humans

often 5jump to conclusions.” For example, when one sees a car parked on the street, one is normally

willing to believe that it has four wheels even though only three are visible. If new evidence arrives -

for example, if one sees the owner carrying a wheel and notices that the car is jacked up - then the

conclusion can be retracted. This kind of reasoning is said to exhibit non- monotonicity, because the

set of beliefs does not grow monotonically over time as new evidence arrives. Nonmonotonic logics

have been devised with modified notions of truth and entailment in order to capture such behaviour.

We will look at two such logics that have been studied extensively: circumscription and default

logic.

Circumscription

The idea is to specify particular predicates that are assumed to be 5as false as possible”4 that

is, false for every object except those for which they are known to be true. For example, suppose we

want to assert the default rule that birds fly. We would introduce a predicate, say Abnormal 1(x), and

write

Bird(x) 𝖠￢Abnormal 1(x) ⇒ Flies(x) .

If we say that Abnormal 1 is to be circumscribed, a circumscriptive reasoner is entitled to

assume ￢Abnormal 1(x) unless Abnormal 1(x) is known to be true. This allows the conclusion

Flies(Tweety) to be drawn from the premise Bird(Tweety), but the conclusion no longer holds if

Abnormal 1(Tweety) is asserted. For circumscription, one model is preferred to another if it has fewer

abnormal objects.

Let us see how this idea works in the context of multiple inheritance in semantic networks.

The standard example for which multiple inheritance is problematic is called the 5Nixon diamond.”

It arises from the observation that Richard Nixon was both a Quaker (and hence by default a pacifist)

and a Republican (and hence by default not a pacifist). We can write this as follows:

Republican(Nixon) 𝖠 Quaker(Nixon) . Republican(x) 𝖠￢Abnormal 2(x) ⇒ ￢Pacifist (x) .

Quaker(x) 𝖠 ￢Abnormal 3(x) ⇒ Pacifist (x) .

If we circumscribe Abnormal 2 and Abnormal 3, there are two preferred models: one in jwhich

Abnormal 2(Nixon) and Pacifist (Nixon) hold and one in which Abnormal 3(Nixon) and

￢Pacifist(Nixon) hold. Thus, the circumscriptive reasoner remains properly agnostic as to whether

Nixon was a pacifist. If we wish, in addition, to assert that religious beliefs take PRIORITIZED

precedence over political beliefs, we can use a formalism called prioritized circumscription to give

preference to models where Abnormal 3 is minimized.

Default logic

Default logic is a formalism in which default rules can be written to generate contingent,

non-monotonic conclusions. A default rule looks like this: Bird(x) : Flies(x)/Flies(x) . This rule means

that if Bird(x) is true, and if Flies(x) is consistent with the knowledge base, then Flies(x) may be

concluded by default. The Nixon-diamond example can be represented in default logic with one fact

and two default rules:

Republican(Nixon) 𝖠 Quaker(Nixon) .

Republican(x) : ￢Pacifist (x)/￢Pacifist (x) .

Quaker(x) : Pacifist (x)/Pacifist (x) .

Truth Maintenance Systems (TMS)

Many of the inferences drawn by a knowledge representation system will have only default

status, rather than being absolutely certain. Inevitably, some of these inferred facts will turn out to be

wrong and will have to be retracted in the face of new information. This process is called belief

revision.

 Suppose that a knowledge base KB contains a sentence P - perhaps a default conclusion recorded

by a forward-chaining algorithm, or perhaps just an incorrect assertion - and we want to execute

TELL(KB, ￢P). To avoid creating a contradiction, we must first execute RETRACT(KB, P). Truth

maintenance systems, or TMSs, are designed to handle exactly these kinds of complications.

One simple approach to truth maintenance is to keep track of the order in which sentences are

told to the knowledge base by numbering them from P1 to Pn. When the call RETRACT(KB, Pi) is

made, the system reverts to the state just before Pi was added, thereby removing both Pi and any

inferences that were derived from Pi. For systems to which many facts are being added, such as large

commercial databases this is impractical.

1. Justification-Based Truth Maintenance System, or JTMS. In a JTMS, each sentence in the

knowledge base is annotated with a justification consisting of the set of sentences from which

it was inferred. RETRACT(P) will delete exactly those sentences for which P is a member of

every justification. So, if a sentence Q had the single justification {P, P ⇒ Q}, it would be

removed; if it had the additional justification {P, P 𝗏 R ⇒ Q}, it would still be removed;

but if it also had the justification {R, P 𝗏R ⇒ Q}, then it would be spared.

2. An Assumption-Based Truth Maintenance System, or ATMS, represents all the states

that have ever been considered at the same time. Whereas a JTMS simply labels

each sentence as being in or out, an ATMS keeps track, for each sentence, of

which assumptions would cause the sentence to be true. In other words, each

sentence has a label that consists of a set of assumption sets.

