
Unit-III Introduction to PERL and Scripting

• Syllabus

• Introduction to PERL and Scripting
– Scripts and Programs, Origin of Scripting, Scripting Today,

Characteristics of Scripting Languages, Uses for Scripting
Languages, Web Scripting, and the universe of Scripting
Languages.

– PERL- Names and Values, Variables, Scalar Expressions,
Control Structures, arrays, list, hashes, strings, pattern and
regular expressions, subroutines.

1

Script and Program

• A Script is a set of instructions that are interpreted.
Scripts are written using a different kind of language
called scripting languages like python, perl, ruby, shell
script, VB Script, etc.

• A program is a set of instructions that are compiled.
Programs are written using programming languages
like C,C++ and JAVA etc.

2

Script and Program
Programming Languages Scripting Languages

Compiler Based Interpreter Based

More Syntax and highly coupled Reduced syntax and loosely
coupled

Convert all the code into binary
and run

Run statement by statement

For big and complex programs For small programs

Faster for large code Faster for small code

Extra memory No extra memory

Popular programming languages
C,C++,JAVA and C#

Popular Scripting languages
Python, Perl, Ruby, PHP 3

Origin of Scripting
• The word ‘script’ in a computing content in 1970’s,

the originators of the UNIX of the UNIX operating
system the term ‘shell script’ (sequence of
commands)

• An Apple Macintosh Hypercard application, one of
the early hypertext systems

• The associated HyperTalk language allowed the user
to define sequence of actions to be associated with
mouse click or movement, and these were called
script.

• Initially a script as a sequence of commands to
control an application or a device.

4

Scripting Today
• The term “scripting” is nowadays used with three different meanings.

– A new style of programming which allows applications to
be developed much faster than traditional methods.

• The use of VB to develop GUI using pre built visual control

– Using scripting language to manipulate, customize and
automate the facilities of an existing system.

• Use of client side scripting and Dynamic HTML to create interactive
web pages.

– Using scripting language with its rich functionality, we can
use an alternate to a conventional languages for general
programming tasks, particularly system programming and
system administration.

• Windows NT systems users PERL for administration . Apaches has
embedded perl interpreter for GUI scripts.

5

Characteristics of Scripting Languages

– Both batch and interactive use

– Economy of expression

– Lack of declarations, simple scoping rules

– Flexible dynamic typing

– Easy access to other programs

– Sophisticated pattern matching and string manipulation

– High level data types.

6

Uses for Scripting Languages
– Scripting languages are of two kinds

• Traditional Scripting

• Modern Scripting

– Traditional Scripting
• The activities which require traditional scripting include

– System administration

– Controlling Remote Applications

– System and Application extensions

– Experimental Programming

– Command Line interface

– Modern Scripting

• Visual Scripting

• Scriptable components

• Client side and Server side scripting

7

Web Scripting
• Web script, a computer programming language for adding dynamic

capabilities to world wide web pages.

• Web scripting can be add information to a page as a reader uses it or

let the reader enter information that may be passed on to the order

department of an online business.

• Processing web forms

• Creating Dynamic web pages with enhanced visual effects and user

interaction.

• Dynamically Generating web pages “on the fly” from material held in a

database.

8

The Universe of Scripting Languages
• Scripting can be traditional or modern scripting, and web scripting forms an

important part of modern scripting.

• Scripting universe contains multiple overlapping worlds

• The original UNIX world of traditional scripting using perl.

• The Microsoft world of VB and Active controls

• The world of VB for scripting compound documents.

• The world of client –side and server side web scripting

• The overlap is complex, for example web scripting can be done in Vbscript,

JavaScript /Jscript, perl or TCL.

• The universe has been enlarged as Perl and TCL are used to implement complex

applications for large organizations.

• Example TCL has been used to develop a major Banking system, and Perl has been used

to implement an enterprise wide document management system for leading aerospace

company.
9

Perl
• Perl is a programming language developed by Larry Wall, specially designed for

text processing.

• Its typical use for extracting information from a textfile and printing out report
for converting a text file into another form.

• This is because it got its name after the expression “Practical Extraction and
Report Language”.

• Perl takes the best features from other languages, such as C, awk, sed, sh, and
BASIC, among others.

• Perl's database integration interface DBI supports third-party databases
including Oracle, Sybase, Postgres, MySQL, and others.

• Perl works with HTML, XML, and other mark-up languages.

• Perl supports Unicode.

• Perl supports both procedural and object-oriented programming.

• Perl supports both procedural and object-oriented programming.

• Perl interfaces with external C/C++ libraries through XS or SWIG (The Simplified

Wrapper and Interface Generator) –Connector C libraries to scripting languages
10

Perl
• Perl is extensible. There are over 20,000 third party modules available from the

Comprehensive Perl Archive Network (CPAN).

• The Perl interpreter can be embedded into other systems such as web
servers and database servers.

• Perl is Open Source software, licensed under its Artistic License

• Perl can be embedded into Apache web servers to speed up processing.

• In Perl, a comment begins with a hash (#) character. Perl interpreter ignores
comments at both compile-time and runtime.

11

http://perl.apache.org/
http://www.postgresql.org/docs/8.4/interactive/plperl.html
http://www.opensource.org/
http://dev.perl.org/licenses/
http://dev.perl.org/licenses/artistic.html

Names and Values

• The data can be either number, characters, or more complex such as a list.

• Data is held as value. The following examples are values:
10

20.2

"Perl syntax"

• To hold a piece of data, you need variables. You use a variable to store a
value. And through the name of the variable, you can process the value.

• The following illustrates some variables in Perl:

12

https://www.perltutorial.org/perl-numbers/
https://www.perltutorial.org/perl-string/
https://www.perltutorial.org/perl-list/
https://www.perltutorial.org/perl-variables/

Expressions

13

In Perl, an expression is anything that returns a value.

• The expression can be used in a larger expression or a statement.

• The expression can be a literal number, complex expression with operators,

or a function call.

• For example, 3 is an expression that returns a value of 3. The $a + $b is an

expression that returns the sum of two variables: $a and $b.

https://www.perltutorial.org/perl-numbers/
https://www.perltutorial.org/perl-operators/
https://www.perltutorial.org/perl-subroutine/

Statements

14

• A statement is made up of expressions. A statement is
executed by Perl at run-time.

• Each Perl statement must end with a semicolon (;).

• The following example shows the statements in Perl:

Blocks

15

• A block is made up of statements wrapped in curly
braces {}.

• You use blocks to organize statements in the program.

• The following example illustrates a block in Perl:

Whitespace

16

• Whitespaces are spaces, tabs, and newlines.

• Perl is very flexible in terms of whitespaces usages.
Consider the following example:

$x = 20;

$y=20;

• Code language: Perl (perl)Both lines of code work perfectly.

Keywords

17

• Perl has a set of keywords that have special meanings
to its language.

• Perl keywords fall into some categories such as built-in
function and control keywords.

Variables

18

• A variable is a place to store values.

• They can be manipulated throughout the program.

• When variables are created they reserve some
memory space.

• There are three types of variables:

– Scalar defined by $

– Arrays defined by @

– Hashes defined by %

– Subrounte defined by(&)

Variables

19

Scalar Variable
$name = "Anastasia";

$rank = "9th";

$marks = 756.5;

Print “$name”

Print “$rank”

Print “$marks”

Scalar Operations
my $x = 5;

say $x;

my $y = 3;

say $y;

say $x + $y;

say $x . $y;

say $x x $y;

Variables-Scalar (single)-Expressions

20

Variables-An Array

21

• An array is a variable that stores an ordered list of scalar values.

• Array variables are preceded by an "at" (@) sign.

• To refer to a single element of an array, you will use the dollar sign ($) with
the variable name followed by the index of the element in square brackets.

• Here is a simple example of using the array variables −

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

print "\$names[2] = $names[2]\n“

OUTPUT:

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

Variables-Hashes

22

• A Perl hash is defined by key-value pairs.

• Perl stores elements of a hash in such an optimal way that you
can look up its values based on keys very fast.

• Example

Variables-Subroutine

23

• A Perl subroutine or function is a group of statements that together
performs a task. You can divide up your code into separate subroutines.

• Define and Call a Subroutine
• The general form of a subroutine definition in Perl programming

language is as follows −

sub subroutine_name {

body of the subroutine }

The typical way of calling that Perl subroutine is as follows −

subroutine_name(list of arguments);

EXAMPLE

sub Hello {

print "Hello, World!\n"; }

Hello(); # Function call

When above program is executed, it produces the following result −

Hello, World!

Control Structures

24

• If-else

• if-elsif-else

• while/until

• for/foreach

Control Structures

25

If-else

Example:

Syntax

Control Structures

26

if-elsif-else.

Syntax

Control Structures

27

if-elsif-else

Example:

Control Structures

28

for:

Syntax

for (init statement; condition; increment/decrement)

{

Code to be Executed

}

Example:

Perl program to illustrate the for loop

for ($count = 1 ; $count <= 3 ; $count++)
{

print “$count”

}

Control Structures

29

foreach variable

{

Code to be Executed

}

Example:

Array

@data = (‘for', ‘each', ‘example');

foreach loop

foreach $word (@data)

{

print $word

}

Control Structures

30

while (condition)

{

Code to be executed

}

Example:

$a = 10;

while loop execution

while($a < 20)

{

printf "Value of a: $a\n";

$a = $a + 1;

}

do.. while

do { # statements to

be Executed }

while(condition);

Example:

$a = 10;
do..While loop
do {

print "$a
";

$a = $a - 1;
} while ($a >
0);

OUTPUT:

10 9 8 7 6 5 4 3 2 1

OUTPUT:

10 11 12 13 14 15 16 17 18 19 20

Control Structures

31

until (condition)

{

Statements to be executed

}

Example:

until loop
a=10
until ($a < 1)
{

print "$a ";
$a = $a - 1;

OUTPUT:
10 9 8 7 6 5 4 3 2 1
}

Perl Strings

32

• In perl, a string is a sequence of characters surrounded by some kinds of
quotation marks.

• Ex: $str1=“string with double quotes”;

$str2=‘string with single quote”;

• Note: Double quoted string replaces variables inside it by their values, while
the single quoted strings treats them as text.

• The operator make it easy to manipulate a string in different ways. There
are two types of string operators. They are
– Concatenation (.)

– Repetition(X)

• Example

• Print “this” .”is” .”perl strings”; # output: this is perl strings

• Print “hello”X4 # prints hellohellohellohello

Perl Strings functions

33

• length(string);

• uc(string);

• lc(string);

• Index(string, substring);

• Substr(string, starting_position,ending_position)

Perl Strings functions

34

Perl Strings functions

35

Example
my $s=“Learning perl is easy”

my $sub=“perl”;

my $p=index($s, $sub);

Print(qw\The substring “$sub” found at position “$p” in string “$s”\,
“\n”);

OUTPUT:
The substring perl found at position 9 in string Learning perl is eary.

Perl Strings functions

36

Perl List

37

• A Perl list is a sequence of scalar values. You use
parenthesis and comma operators to construct a list.

• Each value is the list is called list element.

• List elements are indexed and ordered. You can refer
to each element by its position.

https://www.perltutorial.org/perl-variables/

Simple Perl List

38

Complex Perl List

39

Perl List –Accessing

• We can access the element of a list by using the zero
based index. To access the nth element, we need to
put (n-1) index inside square brackets.

• Syntax: $listname[index];

• Ranges: Perl allows you to build a list based on range
of numbers or characters

– Example: (1..20), (a..z)

40

Perl List –using qw function

41

Perl List –using Flattening List

42

Perl List –slicing List

@list1=(1, “hello”,3, “for”,5);

@list2=@list1[1,2,4]; #slice positions

Print “sliced list: @list2;

OUTPUT:

Hello 3 5

43

Perl Arrays

44

• A Perl array variable stores an ordered list of scalar values.

• To refer a single element of Perl array, variable name will be preceded with
dollar ($) sign followed by index of element in the square bracket.

• Syntax

@arrayName = (element1, element2, element3..);

#!/usr/bin/perl

@num = (2015, 2016, 2017);

@string = ("One", "Two", "Three");

print "$num[0]\n";

print "$num[1]\n";

print "$num[2]\n";

print "$string[0]\n";

print "$string[1]\n";

print "$string[2]\n";

Print “@num”;

Perl Array accessing

45

• To access a single element of a Perl array, use ($) sign before
variable name.

• You can assume that $ sign represents singular value and @ sign
represents plural values.

• Variable name will be followed by square brackets with index
number inside it.

• Indexing will start with 0 from left side and with -1 from right
side.

@months = qw/Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec/;
print "$months[0]\n";

print "$months[1]\n";

print "$months[7]\n";

print "$months[9]\n";

print "$months[6]\n";

print "$months[-3]\n";

Perl Array accessing

46

Perl Array Functions

47

• You can add or remove an element from an array
using some array functions.

• We'll discuss following array Perl functions:

– Push

– Pop

– Shift

– Unshift

Push on Array

48

Pop on Array

49

Shift on Array

50

Unshift on Array

51

splice on Array

52

sorting on Array

53

Merging TWO arrays

54

Splitting arrays

55

Join Arrays

56

Perl Hashes

• The hashes is the most essential and influential part of the perl
language.

• A hash is a group of key-value pairs.

• The keys are unique strings and values are scalar values. Hashes
are declared using my keyword.

• Hashes are same like as arrays, but hashes are unordered and
also the hash elements are accessed using its value while array
elements are accessed using its index value.

• The variable name starts with a (%) sign.

• Syntax

my %hashName = ("key" => "value”);

57

Perl Hash Accessing
• To access single element of hash, ($) sign is used before the variable name

and then key element is written inside {} braces.

Example:

my %capitals = ("India" => "New Delhi", "South Korea" => "Seoul", "USA" => "Wa
shington, D.C.", "Australia" => "Canberra");

print " $capitals{'India'}\n";

print "$capitals{'South Korea'}\n";

print "$capitals{'USA'}\n";

print "$capitals{'Australia'}\n";

OUTPUT:
New Delhi

Seoul

Washington D.C

Canberra

58

Perl sorting Hash by key using foreach
• You can sort a hash using either its key element or value element. Perl provides a

sort() function for this. In this example, we'll sort the hash by its key elements.

my %capitals = (

"India" => "New Delhi",

"South Korea" => "Seoul",

"USA" => "Washington, D.C.",

"Australia" => "Canberra"

);

Foreach loop

foreach $key (sort keys %capitals) {

print "$key: $capitals{$key}\n";

}

59

Perl Removing Hash Elements
• To remove a hash element, use delete() function.

• Here, we have removed both the key-value pairs which were added in the
last example.

my %capitals = (

"India" => "New Delhi",

"South Korea" => "Seoul",

"USA" => "Washington, D.C.",

"Australia" => "Canberra"

"Germany " => " Berlin"

" UK " => "London"

);

while (($key, $value) = each(%capitals)){

print $key.", ".$value."\n"; }

#removing element

delete($capitals{Germany});

delete($capitals{UK});

Printing new hash

print "\n";

while (($key, $value) = each(%capitals)){

print $key.", ".$value."\n"; } 60

Patterns

61

• A pattern is a sequence of characters to be searched for in a
character string.

• In perl, patterns are normally enclosed in slash character : ex. /def/

$line = "This is perl regular expression ";
if ($line =~ /perl/)
{

print "Matching\n";
}
else
{

print "Not Matching\n";
}
OUTPUT: Matching

Patterns

62

• Example:

$line = "This is perl regular expression ";
if ($line =!~ /perl/)
{

print "Matching\n";
}
else
{

print "Not Matching\n";
}
OUTPUT: Not Matching

$string = “perl has four kinds of variables";

$string =~ s/four/4/;

Printing the updated string

print "$string\n";

Patterns

63

OUTPUT:

perl has 4 kinds of variables

$true = ($foo =~ m/foo/);

will set $true to 1 if $foo matches the regex, or 0 if the match fails.

Patterns

64

Regular Expressions

• A regular expression is a string of characters that defines the
pattern or patterns you are viewing

• A RE is also referred as regex or regexp

• A regular expression can be either simple or complex, depending
on the pattern you want to match

• Syntax: string =~regx;

• There are three RE operators with perl

– Match regular expression –m//

– Substitute regular expression –s//

– Translator regular expression –tr//

65

Regular Expressions-Examples

• $foo =~ m/this\|that/
– Matches the string either this or that

• $string =~ s/a/b/;
– This will replace the first “a” in $string with a “b”.

• $string =~ s/a/b/g;
– put a “g” for global at the end of the line

• $string =~ s/[^0-9]//g;
– This replaces anything matched by the first expression,

• $string =~ s/[aeiou]/[AEIOU]/g;
– to make all vowels uppercase

• $string =~ tr/aeiou/AEIOU/;
– Translation works on a per character basis, replacing each item in the first

list with the character at the same position in the second list.

66

Complex Regular Expressions: Meta characters

67

Subroutines

• A perl function or subroutine is a group of statements that
together perform a specific task.

• The word subroutines is used most in perl programming
because it created using “sub”

• Syntax
Sub subroutine_name

{

#body of the function or subroutine

}

• In perl scripting, subroutines can be called by passing the
parameters list to it as follows

• Subrountine_name(parameters_list);

68

Subroutines

• Example1
sub add(a,b);

{

return (a+b);

}

$sum=add(4,6);

Print “$sum”;

69

Example2:

#!/usr/bin/perl # below is function definition

sub Print_hello

{

print("Hello, Perl\n");

}

below is function call

Print_hello();

Subroutines

• Advantages

– It helps to reuse the code

– Organizing the code in structural format

– It increases code readability

70

