
Unit-IV Advanced Perl

• Syllabus

• Finer points of looping, pack and unpack, file system,

eval, data structures, packages, modules, objects,

interfacing to the operating system, Creating Internet

ware applications, Dirty Hands Internet Programming,

security Issues.

1

Finer points of looping

• next

• last

• continue

• redo

• goto

2

next
• The Perl next statement starts the next iteration of the loop. You can

provide a LABEL with next statement where LABEL is the label for a loop.

3

#!/usr/local/bin/perl

$a = 10;

while($a < 20)

{

if($a == 15)

{ # skip the iteration.

$a = $a + 1;

next;

}

print "value of a: $a\n"; $a = $a + 1; }

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

OUTPUT

last
• When a last statement is encountered inside a loop, the loop is immediately

terminated and the program control resumes at the next statement following the
loop.

• You can provide a LABEL with last statement where LABEL is the label for a loop.

• If there is any continue block on the loop, then it is not executed.

4

Continue
• A continue BLOCK, is always executed just before the conditional is about to be

evaluated again.

• A continue statement can be used with while and foreach loops.

5

redo
• The redo command restarts the loop block without evaluating the conditional

again.

• You can provide a LABEL with redo statement where LABEL is the label for a loop.

• A redo statement can be used inside a nested loop where it will be applicable to
the nearest loop if a LABEL is not specified.

• If there is any continue block on the loop, then it will not be executed before
evaluating the condition.

6

goto
• Perl does support a goto statement. There are three forms: goto LABEL, goto EXPR,

and goto &NAME.

7

goto

8

The infinite loop

• A loop becomes infinite loop if a condition never becomes false.

• The for loop is traditionally used this for this purpose.

9

Multiple Loop Variables

10

Pack and unpack

• The pack and unpack functions in Perl are two functions for
transforming data into a user-defined template.

• The pack and unpack functions are used to convert data to and
from a sequence of bytes.

• This is useful when accessing data from the network, a file, or
I/O.

11

Pack
• The pack function evaluates the data in List and outputs a

binary representation of that data according to Expr.

• The pack produces a string by taking two

12

Expr: A character that is optionally followed by a number(e.g A2)

List: The data that is converted into bytes.

Return value

pack returns the bit representation of the data in List, interpreting it

according to the rules defined in Expr..

Pack-program

13

OUTPUT:

bits are A

pack "cccccccccc“, @codes

or

pack "c10",@codes

pack produces a string corresponding the 10 corresponding

ASCII characters.

Script:

Unpack
• The unpack function reverses the process, a string a data

structure into a list.

• The unpack function evaluates the bit-stream in List and
interprets it according to Expr before outputting it.

• Syntax

– unpack expr list

• Expr: A character that is optionally followed by a number
(e.g. A2).

• List: The data that is interpreted.

• Return value

– unpack returns the representation of the bitstream
in List according to the rules defined in Expr.

14

Unpack

15

Working with files

• Perl scripts communicate with the outside world through
a number of I/O channels.

• we have already met STDIN,STDOUT,STDERR which are
automatically opened when a script is started.

• File Handles

• file handles are created by the open function:

• open(IN,"<filename");#read

• open(OUT,">filename");#write

• open(LOG,">>filename");append,

• open(FILE1,"+>filename");read and write, but write first

• open(FILE2,"+<filename");read and write, but read first
16

Working with files

17

• Opening and Closing Files

• Opening a file

open(DATA, "<file.txt");

Here DATA is the file handle, which will be used to read the file.

Example:

Script: open a file and will print its content over the screen.

#!/usr/bin/perl

open(DATA, "<file.txt") or die "Couldn't open file file.txt, $!";
while(<DATA>)

{

print "$_";

}

Working with files

18

• Closing a File:

• if the open operation is unsuccessful-no warning is given:

• input using the file handle will return undef, and output will be
silently discarded.

• Example:

open HANDLE, "filename" or die "can't open\n";
– die prints its argument on STDERR and kills the current process.

open(HANDLE,"filename")||die "can't open \n";
– The brackets round the arguments of the open function are necessary

because || has a higher precedence than comma.

File status check

19

• file status check

-e file exists

-s file has non zero size

-z file has zero size

-r file is readable

-w file is writable

-x file is executable

-f file is a plain file, not a director

-d file is a directory

-t file is a character device file

File status check

20

if (-e /path/to/file)

{

print “File found.”

else

print “File does not exist”

}

OUTPUT:

File found.

sysread and syswrite

21

• The read function reads a block of information
from the buffered filehandle:

• This function is used to read binary data from the
file.

• $bytes_read=sysread PACKETS, $data, $length;

– Returned number of bytes actually read.

• $bytes_written=syswritten BINFILE, $binstring,$n

– The value returned is number of bytes actually
written

Random access files

22

eval

23

eval

24

eval

25

Data Structures

Perl support the following data structures

1. array of arrays.

2. hash of arrays.

3. array of hashes.

4. hash of hashes.

26

1. Array of Arrays

• There are many kinds of nested data structures.
The simplest kind to build is an array of arrays,
also called a two-dimensional array or a matrix.

27

1. Data Structures: Array of Arrays
• Data Structure having an array having list of

array references is called as array of array.

• Declaration:

@<Array Name>=(*…+*…+*…+);

(or)

$<Array Name>=**…+*…+*…++;

• Accessing:

• Elements inside the array are the array
references. Dereferences the array references
to get the array elements.

28

1. Array of Arrays: using
@<Array Name>=(*…+*…+*…+);

• # Assign a list of array references to an array.

@AoA = (["fred","barney"],

["george", "jane", "elroy"],

["homer", "marge", "bart"],);

print $AoA[2][1]; # prints "marge”

Note: The overall list is enclosed by parentheses, not brackets,
because you're assigning a list and not a reference.

29

1. Array of Arrays using
$<Array Name>=[[…][…][…]];

• If you wanted a reference to an array instead, you'd
use brackets:

• # Create an reference to an array of array references.

$ref_to_AoA = [

["fred", "barney", "pebbles", "bamm bamm", "dino",],

["homer", "bart", "marge", "maggie",],

["george", "jane", "elroy", "judy",],];

print $ref_to_AoA->[2][3]; # prints "judy”

30

1. Array of Arrays using Arrays
#!/usr/bin/perl

use strict;

use warnings;

use Data::Dumber

my @lines=(“yahoo.com”, “google.com”, “gitam.edu”, “au.edu”, “cbit.edu”,
“gayatri.edu”, “sreyas.edu”, 10..15);

my@aoa;

foreach(@lines)

{

if($_=~/com/){push(@{$aoa[0]},$_); }

{elsif(($_=~/edu/){push(@{$aoa[1]},$_);}

else { push (${$aoa[2]},$_); }

}

print Dumper (\@doa), ”\n”;

31

1. Insert element into Array of Arrays

• PUSH to Array of Arrays

while (<>)

{

@tmp = split; # Split elements into an array.

push @AoA, [@tmp]; # Add an anonymous array reference to @AoA.

}

32

2. Hash of arrays
• Data Structure having a hash where values of

each key are array references.

1.Declaration

%<Hash Name>=(key=>[...]);

(or)

$<Hash Name>={key=>[...]};

2.Accessing:

Values of each key are accessed like an array
reference where

33

OUTPUT

EXAMPLE

3. Array of Hashes
A data structure where array has a list of hashes.

1) Declaration:

• @<Array Name>=({key1=>Value1}, {key2=>Value2});

(or)

• $<Array Name>=[{ key1=>Value1}, {key2=>Value2}];

2) Accessing:

• Hash references are the objects of array. By
dereferencing them, keys and values are accessed.

3. Array of Hashes-Script

my @aoh=({orderid=>100,cost=>2000,quantity=>3},

{name=>"ravi",address=>"Hyd"};

{brandname=>"tata",vendorname=>"new",carrierName="blu

edart"});

print $aoh[0], "\n"; #print reference no HASH(0X7f94b6003ee8)

print keys %{$aoh[1]},"\n"; #print key :name and address

print $aoh[1]->{"name"},"\n"; #print ravi

4. Hash of Hashes

A data structure where array has a list of hashes

1) Declaration:

%<Hash Name>=(key1=>{...},key2=>{...});

(or)

$<Hash Name>= {key1=>{...},key2=>{...}};

2)Accessing:

Each key hash a hash reference as values in hash of

Hashes. Accessing the key, dereferencing the value which is

a has reference can make the hash accessible.

Hash of Hashes(2D Hash)
use strict;

use warnings;

use Data::Dumper qw(Dumper);

Creating a 2D hash

my %company = ('Sales' => {

'Brown' => 'Manager',

'Smith' => 'Salesman',

'Albert' => 'Salesman',

},

'Marketing' => {

'Penfold' => 'Designer',

'Evans' => 'Tea-person',

'Jurgens' => 'Manager',

},

'Production' => {

'Cotton' => 'Paste-up',

'Ridgeway' => 'Manager',

'Web' => 'Developer',

},);

Print the List

print Dumper(\%company);

OUTPUT:

Hash of Hashes

Hash of Hashes

OUTPUT

Packages
• Package is combination of subroutines, variables, objects

which has it own namespace.

• A package is a collection of code which lives in its own
namespace.

• Namespace uniquely identifies variables or objects.

• Packages are also known as modules.

• Using modules has a great advantage of code reusability.

• The package stays in effect until either another package

statement is invoked, or until the end of the current block or

file.

• You can explicitly refer to variables within a package using
the :: package qualifier.

Packages
Creating a Package:

1) File extension has to be .pm

2) First line of the package must be the package name.

Ex. package<Package Name>

3) File name and package name must be the same.

4) All the end of the package 1;must be there to evaluate

the code to true

Using Package in a Script
A Package inside a script can be called in 2 ways

1) use <Package Name>

2) require <Package Name>

Difference between use and require:

Use: <function or variable name> #Runtime

Require: <Package name>::<function or variable name>#compile

time

In require fully qualified name has to be mentioned in order to call

a function or variable name where as in Use it is not required

The require and use Function

• A module can be loaded by calling
the require function as follows −

Example-Package creation
Example : Calculator.pm
package Calculator;
Defining sub-routine for Addition

sub addition
{

Initializing Variables a & b
$a = $_[0];
$b = $_[1];
Performing the operation
$a = $a + $b;

Function to print the Sum
print "\n***Addition is $a";

}
Defining sub-routine for Subtraction
sub subtraction
{

Initializing Variables a & b
$a = $_[0];
$b = $_[1];

Performing the operation
$a = $a - $b;

Function to print the difference
print "\n***Subtraction is $a";

}
1;

Here, the name of the file is
“Calculator.pm” stored in the directory
Calculator.

Notice that 1; is written at the end of the
code to return a true value to the
interpreter. Perl accepts anything which is
true instead of 1.

Example-subroutine call
Examples: Test.pl

#!/usr/bin/perl

Using the Package 'Calculator'

use Calculator;

print "Enter two numbers to add";

Defining values to the variables

$a = 10;

$b = 20;

Subroutine call

Calculator::addition($a, $b);

• print "\nEnter two numbers to
subtract";

• # Defining values to the variables

• $a = 30;

• $b = 10;

• # Subroutine call

• Calculator::subtraction($a, $b);

OUTPUT:

c:\users\bik\perl Test.pl

Enter two numbers to add

*** Addition is 30

Enter two numbers to subtract

***Subtraction is 20

Exporting functions and variable
Functions and variables from a package inside a script

can be called by using Exporter module and inheriting it.

1)Use Exporter;

Exporter module exports variables and functions to its

user namespace.

2) Scope of the variable must be "our" in order export the

variable globally

3) our @ISA=qw(Exporter);

IS A relationship means the package is getting inherited

from Exporter module. Properties of Exporter module can

be used within the package.

Exporting functions and variable

4)our@EXPORT=qw(Function names and variable names

separated with space)

5)Our @EXPORT_OK=qw(Function names and variables

separated with space)-> Exported on demand.

Perl Module

• A Perl module is a reusable package defined in a library file
whose name is the same as the name of the package with a
.pm as extension.

• A Perl module file called Foo.pm might contain statements
like this.

The require and use Function

• A module can be loaded by calling the require and use function as
follows −

Perl Module

• Few important points about Perl modules

– The functions require and use will load a module.

– Both use the list of search paths in @INC to find the

module.

– Both functions require and use call the eval function

to process the code.

– The 1; at the bottom causes eval to evaluate to TRUE

(and thus not fail).

Objects in Perl
• A Perl class is simply a package having a constructor (a special

kind of function) to create objects of it and a Perl object can be
any variable but mostly a reference to a hash or an array is
used.

• Constructor
– A constructor is a function which uses bless function inside

it and also returns a reference to something that has the
class name associated with it (basically an object).

– It means that constructor is a special kind of function which
has two specialties:

• It uses bless function

• It returns a reference to something that has the class
name associated with it

Objects in Perl
• bless

– bless function is used to attach an object with a
class. Its syntaxes are bless REF,CLASSNAME

Objects in Perl-Example

Objects in Perl

Objects in perl

OUTPUT

Interfacing to the Operating System
• The OS interface that is common to UNIX and windows NT.

• The original UNIX implementation of Perl mirrored the most used
system calls as built-in functions.

• Perl could be used as an alternative to writing shell scripts.

• The following factors are interfacing to the Operating System.

1. Environment variables

2. File system calls

3. Shell Commands

4. Process control in UNIX

5. Process control in Windows NT

6. Accessing windows Registry

7. Controlling OLE automation servers

1. Environment Variables

• The current environment variables are stored in the
special hash %ENV.

• A script can read them or change them by accessing
this hash.

{

local $ENV {"PATH"}=...;

...

}

• The commands inside the block are executed with the
new path variable, which is replaced by the original
one on exit from the block.

2. File System calls

3.Shell Commands

3.Shell Commands

• Quoted execution

The output of a shell command can be
captured using quoted execution.

• Example:

$date=`date`;

3. Shell Commands-exec
– The exec function terminates the current script and

executes the program named as its argument, in the

same process.

– exec never return, and it have die clause

Example:

– exec "sort $output" or die "can't exec sort \n“

• exec can be used to replace the current script with a

new script

– exec "perl -w scr2.pl" or die "Exec failed \n"

4.Process control in UNIX

4.Process control in UNIX

4.Process control in UNIX

• Pipe is one-way communication only i.e we can use a pipe

such that One process write to the pipe, and the other

process reads from the pipe.

• The pipe can be used by the creating process, as well as all

its child processes, for reading and writing.

• One process can write to the “virtual file” or pipe and another

related process can read from it.

• If a process tries to read before something is written to the

pipe, the process is suspended until something is written.

4.Process control in UNIX

4.Process control in UNIX
#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main(void) {

int fd[2], nbytes; pid_t childpid;

char string[] = "Hello, world!\n";

char readbuffer[80]; pipe(fd);

if((childpid = fork()) == -1)

{

perror("fork"); exit(1); }

if(childpid == 0)

{ /* Child process closes up input side of pipe */ close(fd[0]);

/* Send "string" through the output side of pipe */

write(fd[1], string, (strlen(string)+1));

exit(0);

}

4.Process control in UNIX
else

{ /* Parent process closes up output side of pipe */
close(fd[1]);

/* Read in a string from the pipe */

nbytes = read(fd[0], readbuffer, sizeof(readbuffer));

printf("Received string: %s", readbuffer);

} return(0);

}

OUTPUT:

Received string Hello, world

4.Process control in UNIX

Creating Internet ware applications

• The internet is a rich source of information, held on
web servers, FTP servers, POP/IMAP mail servers,
news servers etc.

• A web browser can access information on web
servers and FTP servers, and clients access mail and
news servers. However, this is not the way of to the
information retrieval.

• an 'internet-aware' application can access a server
and collect the information without manual
intervention

Creating Internet ware applications
• For suppose that a website offers 'lookup' facility in

which the user a query by filling in a then clicks the
'submit' button.

• The data from the form in sent to a CGI program on
the server(probably written in which retrieves the
information, formats it as a webpage, and returns the
page to the browser.

Creating Internet ware applications

• A perl application can establish a connection to the
server, send the request in the format that the
browser would use, collect the returned HTML and
then extract the fields that form the answer to the
query.

• In the same way, a perl application can establish a
connection to a POP3 mail server and send a request
which will result in the server returning a message
listing the number of currently unread messages

Creating Internet ware applications
• The LWP (library for WWW access in perl) collection

of modules is suitable point to makes the kind of
interaction to the web server.

• The LWP:: simple module is a interface to web
servers.

• It can be achieved by exploiting modules,
LWP::simple we can retrieve the contents of a web
page in a statement:

• use LWP::simple
$url=...http://www.somesite.com/index.html..;
$page=get($url);

Dirty Hands Internet Programming
• Modules like LWP: : Simple and LWP: :User Agent

meet the needs of most programmers requiring web
access, and there are numerous other modules for
other types of Internet access.

Example:- Net: : FTP for access to FTP servers

• Perl both in the form of modules(e.g IO: : Socket) and
at an even lower level by built-in functions.

• Support for network programming in perl is so
complete that you can use the language to write any
conceivable internet application Access to the
internet at this level involves the use of sockets.

Dirty Hands Internet Programming
• Sockets are network communication channels,

providing a bi-directional channel between processes
on different machines.

• Sockets were originally a feature of UNIX other UNIX
systems adopted them and the socket became the de
facto mechanism of network communication in the
UNIX world.

• The popular Winsock provided similar functionality
for Windows, allowing Windows systems to
communicate over the network with UNIX systems,
and sockets are a built-in feature of Windows 9X and
WindowsNT4.

Dirty Hands Internet Programming
• From the Perl programmer’s point a network socket can be

treated like an open file it is identified by a you write to it with
print, and read it from operator.

• The socket interface is based on the TCP/IP protocol suite, so
that all information is handled automatically.

•

• In TCP a reliable channel, with automatic recovery from data
loss or corruption: for this reason a TCP connection is often
described as a virtual circuit.

• The socket in Perl is an exact mirror of the UNIX and also
permits connections using UDP(User Datagram Protocol) and it
is Unreliable.

Security Issues
• A programming language, by design, does not normally constitute a security

risk.

• Almost every language has certain flaws that may facilitate to some extent
the creation of insecure software, but the overall security of a piece of
software still exists.

• Perl has its share of security “gotchas”, and most Perl programmers are
aware of none of them.

– Basic user input vulnerabilities

– The system() and exec() functions

– The open() function

– Backticks

– The eval() and the /e regex modifier

– Filtering User Input

– Avoiding the shell

– Insecure Environmental Variables

– setuid scripts

– Buffer Overflows in Perl

Security Issues

• Basic user input vulnerabilities
– For example, if you are writing CGI scripts in Perl, expect that malicious

users will send you bogus input.

• The system() and exec() functions
– system() acts very much like exec(). The only major difference is that Perl

first forks off a child from the parent process.

– The child is the argument supplied to system(). The parent process waits
until the child is done running, and then proceeds with the rest of the
program.

• The open() function
– The prefix "<" opens the file for input, but this is also the default mode if

no prefix is used.

– Some problems of using invalidated user input as part of the filename
should already be obvious.

Security Issues
• Backticks

– In Perl, yet another way to read the output of an external program is to
enclose the command in backticks.

– So if we wanted to store the contents of our stats file in the scalar $stats,
we could do something like:

$stats = `cat /usr/stats/$username`;
– This does go through the shell. Any script that involves user input inside

of a pair of backticks is at risk to all.

• The eval() and the /e regex modifier
– The eval() function can execute a block of Perl code at runtime, returning

the value of the last evaluated statement.

– eval $userinput.

• This also applies to the /e modifier in regular expressions that makes
Perl interpret the expression before processing it.

Security Issues
• Filtering User Input

– The following snippet for example will cease to execute a security critical
operation if the user input contains anything except letters, numbers, a
dot, or an @ sign (characters that may be found in a user’s email
address):

– unless ($useraddress =~ /^([-@w.]+)$/)

{

print "Security error ";

exit (1);

}

• Avoiding the shell
– Often, you can avoid using external programs to perform a function by

using an existing perl module.

– The Comprehensive Perl Archive Network (CPAN — www.cpan.org) is a
huge resource of tested functional modules for almost anything that a
standard UNIX toolset can do.

Security Issues
• Insecure Environmental Variables

• PATH,@INC,$ENV are insecure

• setuid scripts
– Normally a Perl program runs with the privileges of the user who

executed it.

– By making a script setuid, its effective user ID can be set to one that has
access to resources to which the actual user does not

• Buffer Overflows and Perl
– buffer overflow conditions in some older implementations of Perl.

Notably, version 5.003 can be exploited with buffer overflows.

