

lOMoAR cPSD|16826574

UNIT - IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for

Planning with State-Space Search,Planning Graphs, other Classical

Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources,

Hierarchical Planning,

Planning and Acting in Nondeterministic Domains, Multi agent Planning.

Start State Goal State

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

C

B

A

 We have defined AI as the study of rational action, which means that planning—

devising a plan of action to achieve one’s goals—is a critical part of AI. We have seen two examples

of planning agents so far: the search-based agent and problem-solving agent

• The problem-solving agent of can find sequences of actions that result in a goal state. But it

deals with atomic representations of states and thus needs good domain-specific heuristics

to perform well.

• The search based agent can find plans without domain-specific heuristics because it uses

domain-independent heuristics based on the logical structure of the problem. For example,

in the vaccum world, the simple action of moving a step forward had to be repeated for all

cleaning the surface.

 Classical Planning is one of the classic AI problems, it has been used as the basis for applications

like controlling robots and having conversations. In classical planning, we use a factored

representation one in which a state of the world is represented by a collection of variables called

PDDL(the Planning Domain Definition Language), that allows us to express all 4 Thing actions with

one action schema.

The PDDL describes the four things to define a search problem. The things are

(1)The initial state

(2)T he actions that are available in a state

(3)The result of applying an action, and

(4) The goal test.

Each state is represented as a conjunction of fluents that are ground, functionless atoms. For example At

(Truck 1, Melbourne) ∧ At (Truck 2, Sydney).

Example: The blocks world

suppose you have three cubical blocks, A, B, and C, and a robot arm that can pick up and move one

block at a time. suppose they are initially arranged on a table like this:

 B

C

A

we need a precise representation of states, and also of actions that can be applied to states logic is often

user for states, e.g. first guess you could represent a state like this:

lOMoAR cPSD|16826574

• Block(x) means object x is a block

• On(x, y) means object x is on top of object y

• Clear(x) means there is nothing on top of object x

then we could model the initial state like this:

 C

 B A initial state

 On(B, Table) & On(A, Table) & On(C, A)

& Clear(B) & Clear(C)

& Block(A) & Block(B) & Block(C)

clear(x) seems a bit unusual, but is used because most planning languages (such as the one used in the

textbook) don’t support quantifiers in state descriptions

• i.e. if we had quantifiers we could say there is nothing on top of B with the sentence (for all

blocks x).!on(x,B)

• but out planning language doesn’t have quantifiers, so we instead use clear(B) to explicitly

indicate that B can be picked up

now lets consider actions an action modifies a state, so we need to know at least two things for every

action:

• whether or not the action can be applied to a given state; this is called the actions pre-condition

• how the state changes after the action is applied; this is called the action’s effect

for example: (Note: the following steps doesn’t belong to the above example.. this is another sample

steps)

Move(b, x, y)

 Pre-condition: On(b,x) & Clear(b) & Clear(y)

 Effect: On(b,y) & Clear(x) & !On(b,x) & !Clear(y)

MoveToTable(b, x)

 Pre-condition: On(b, x) & Clear(b)

 Effect: On(b, Table) & Clear(x) & !On(b, x)

this is an action schema, i.e. a template that describes all possible move actions

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One

Action(Move (b, x, y),

Action(MoveToTable (b, x),

The complexity of classical planning :

We consider the theoretical complexity of planning and distinguish two decision

problems. PlanSAT is the question of whether there exists any plan that solves a

planning problem. Bounded PlanSAT asks whether there is a solution of length k or

less; this can be used to find an optimal plan.

The first result is that both decision problems are decidable for classical planning.

The proof follows from the fact that the number of states is finite. But if we add

function symbols to the language, then the number of states becomes infinite, and

PlanSAT becomes only semi decidable: an algorithm exists that will terminate with the

correct answer for any solvable problem, but may not terminate on unsolvable

problems. The Bounded PlanSAT problem remains decidable even in the presence of

function symbols.

Both PlanSAT and Bounded PlanSAT are in the complexity class PSPACE, a class

that is larger (and hence more difficult) than NP and refers to problems that can be

solved by a deterministic Turing machine with a polynomial amount of space. Even if

we make some rather severe restrictions, the problems remain quite difficult.

Algorithms for Planning with State-Space Search

The most straight forward approach is to use state-space search. Because the descriptions of

actions in a planning problem specify both preconditions and effects, it is possible to search in

either direction: forward from the initial state or backward from the goal.

(a)Forward State-Space Search:

Example:1

First, forward search is prone to exploring irrelevant actions. Consider the noble task of

buying a copy of AI: A Modern Approach from an online bookseller. Suppose there is an

action schema Buy(isbn) with effect Own(isbn). ISBNs are 10 digits, so this action schema

represents 10 billion ground actions. An uninformed forward-search algorithm would have to

start enumerating these 10 billion actions to find one that leads to the goal.

Suppose you want to buy a book with the ISBN 1234567890. i.e., own ISBN means our book

number Here's how it would work:

1. Action Schema:

o Buy(isbn) is the template action.

2. Instantiating the Action:

o Replace isbn with 1234567890, creating a specific action: Buy(1234567890).

3. Performing the Action:

o Execute Buy(1234567890), meaning you perform the buying process for the book

with ISBN 1234567890.

4. Effect:

o After the action is executed, you now own the book with ISBN 1234567890.

o This new state of owning the book is represented as Own(1234567890).

lOMoAR cPSD|16826574

In summary, performing an action from the schema Buy(isbn) results in a state where you own the

book specified by the isbn, and this new ownership state is denoted as Own(isbn).

Example:2

Second, planning problems often have large state spaces. Consider an air cargo problem with

10 airports, where each airport has 5 planes and 20 pieces of cargo. The goal is to move all the

cargo at airport A to airport B. There is a simple solution to the problem: load the 20 pieces of

cargo into one of the planes at A, fly the plane to B, and unload the cargo. Finding the solution

can be difficult because the average branching factor is huge: each of the 50 planes can fly to 9

other airports, and each of the 200 packages can be either unloaded (if it is loaded) or loaded

into any plane at its airport (if it is unloaded). So in any state there is a minimum of 450 actions

(when all the packages are at airports with no planes) and a maximum of 10,450 (when all

packages and planes are at the same airport). On average, let’s say there are about 2000

possible actions per state, so the search graph up to the depth of the obvious solution has about

2000 nodes.

Example Problem Description:

o Air Cargo Problem: Involves 10 airports, 5 planes at each airport, and 20 pieces of

cargo at each airport.

o Goal: Move all cargo from airport A to airport B.

o Simple Solution: Load all 20 pieces of cargo into one plane at airport A, fly to airport

B, and unload the cargo.

 State Space Complexity:

o State: A specific configuration of all planes and cargo.

o Branching Factor: The number of possible actions from any given state.

o Actions:

▪ Each of the 50 planes can fly to any of the 9 other airports.

▪ Each of the 200 pieces of cargo can be either:

▪ Unloaded (if it is currently loaded onto a plane).

▪ Loaded into any plane at its current airport (if it is not already loaded).

Calculation of Actions:

o Minimum Number of Actions:

▪ Occurs when all cargo is at airports with no planes.

▪ Only actions are the possible flights of planes.

▪ Each of the 50 planes can fly to 9 other airports: 50×9=45050 \times 9 =

45050×9=450 actions.

o Maximum Number of Actions:

▪ Occurs when all cargo and planes are at the same airport.

▪ Each plane can fly to 9 other airports: 50×9=45050 \times 9 = 45050×9=450

actions.

▪ Each of the 200 pieces of cargo can be either loaded or unloaded into any of

the 5 planes at that airport: 200×5=1000200 \times 5 = 1000200×5=1000

actions.

▪ Total maximum actions: 450+1000=1450450 + 1000 = 1450450+1000=1450

actions.

o Average Number of Actions:

▪ Let's assume about 2000 possible actions per state as an average.

(b)Backward (regression) relevant-states search:

In regression search we start at the goal and apply the actions backward until we find a

sequence of steps that reaches the initial state. It is called relevant-states search

because we only consider actions that are relevant to the goal (or current state).

We start with the goal, which is a conjunction of literals forming a description of a set

of states—for example, the goal ¬Poor 𝖠 Famous describes those states in which Poor

is false, Famous is true, and any other fluent can have any value. If there are n ground

flaunts in a domain, then there are 2n ground states (each fluent can be true or false),

but 3n descriptions of sets of goal states (each fluent can be positive, negative, or not

mentioned).

In general, backward search works only when we know how to regress from a state

description to the predecessor state description.

Example: Unloading Cargo

Goal: Deliver a specific piece of cargo (C2) to San Francisco International Airport (SFO):

o The goal is represented as At(C2, SFO), meaning cargo C2 should be at SFO.

Relevant Action: Unload(C2, p', SFO)

o This action involves unloading cargo C2 from an unspecified plane p′ at SFO.

conditions:

▪ In(C2, p'): Cargo C2 is in plane p′.

▪ At(p', SFO): Plane p′ is at SFO.

▪ Cargo(C2): C2 is a piece of cargo.

▪ Plane(p'): p′ is a plane.

▪ Airport(SFO): SFO is an airport.

 Preconditions: In(C2,p′)∧At(p′,SFO)∧Cargo(C2)∧Plane(p′)∧Airport(SFO)

 Effects: At(C2,SFO)∧¬In(C2,p′)

Standardizing Variable Names

• Variable names are standardized (e.g., changing p to p') to avoid confusion when the same

action schema is used multiple times in a plan.

Example 2: Book example

• Goal: Own the book with ISBN 0136042597.

lOMoAR cPSD|16826574

• Action Schema: A=Action(Buy(i), PRECOND: ISBN(i), EFFECT: Own(i))A =

\text{Action(Buy(i), PRECOND: ISBN(i), EFFECT:

Own(i))}A=Action(Buy(i), PRECOND: ISBN(i), EFFECT: Own(i))

• In forward search, the algorithm would enumerate all 10 billion possible Buy actions.

• In backward search:

o Unify the goal Own(0136042597) with the effect Own(i'), yielding the substitution

θ={i′/0136042597}\theta = \{i'/0136042597\}θ={i′/0136042597}.

o Regress over the action with this substitution to get the predecessor state

ISBN(0136042597).

o If this state is part of the initial state, the goal is achieved.

Heuristics for planning:

Neither forward nor backward search is efficient without a good heuristic function.

Recall from Chapter 3 that a heuristic function h(s) estimates the distance from a state s

to the goal and that if we can derive an admissible heuristic for this distance—one that

does not overestimate—then we can use A∗ search to find optimal solutions. An

admissible heuristic can be derived by defining a relaxed problem that is easier to

solve. The exact cost of a solution to this easier problem then becomes the heuristic for

the original problem.

By definition, there is no way to analyze an atomic state, and thus it it requires some

ingenuity by a human analyst to define good domain-specific heuristics for search

problems with atomic states. Example:

For example, consider an air cargo problem with 10 airports, 50 planes, and 200 pieces of

cargo. Each plane can be at one of 10 airports and each package can be either in one of the

planes or unloaded at

one of the airports. So there are 5010 × 20050+10 ≈ 10155 states. Now consider a particular problem

in that domain in which it happens that all the packages are at just 5 of the airports,and all

packages at a given airport have the same destination. Then a useful abstraction of the problem is to

drop all the At fluents except for the ones involving one plane and one package at each of the 5

airports. Now there are only 510 × 55+10 ≈ 1017 states. A solution in this abstract state space will

be shorter than a solution in the original space because the airports have less distance

Planning Graphs:

 This section shows how a special data structure called a planning graph can be used

to give better heuristic estimates. These heuristics can be applied to any of the search techniques

we have seen so far. Alternatively, we can search for a solution over the space formed by the

planning graph, using an algorithm called GRAPHPLAN.

• A planning problem asks if we can reach a goal state from the initial state.

• Suppose we are given a tree of all possible actions from the initial state to successor states,

and their successors, and so on.

• If we indexed this tree appropriately, we could answer the planning question “can we

reach state G from state S0” immediately, just by looking it up.

• Of course, the tree is of exponential size, so this approach is impractical. A planning

graph is polynomial- size approximation to this tree that can be constructed quickly.

• The planning graph can’t answer definitively whether G is reachable from S0, but it can

estimate how many steps it takes to reach G.

• The estimate is always correct when it reports the goal is not reachable, and it never

overestimates the number of steps, so it is an admissible heuristic.

• A planning graph is a directed graph organized into levels: first a level S0 for the initial

state, consisting of nodes representing each fluent that holds in S0; then a level A0

consisting of nodes for each ground action that might be applicable in S0; then alternating

levels Si followed by Ai; until we reach a termination condition .

• Figure 10.7 shows a simple planning problem, and Figure 10.8 shows its planning graph.

Each action at level Ai is connected to its preconditions at Si and its effects at Si+1.

• A literal appears because an action caused it, but we also want to say that a literal can

persist if no action negates it. This is represented by a persistence action (sometimes called

a no-op).

• For every literal C, we add to the problem a persistence action with precondition C and

effect C. Level A0 in Figure 10.8 shows one “real” action, Eat (Cake), along with two

persistence actions drawn as small square boxes.

• The gray lines in Figure 10.8 indicate mutual exclusion (or mutex) links. For example,

Eat (Cake) is mutually exclusive with the persistence of either Have(Cake) or

чEaten(Cake). We shall see shortly how mutex links are computed.

We now define mutex links for both actions and literals. A mutex relation holds between two actions at

a given level if any of the following three conditions holds:

1. Inconsistent Effects:

Figure 10.7 The “have cake and eat cake too” problem.

PRECOND: Have(Cake)

PRECOND: ч Have(Cake)
EFFECT: Have(Cake))

S0 A0 S1 A1 S2

Have(Cake) Have(Cake)

¬ Have(Cake)

Have(Cake)

¬ Have(Cake)

¬ Eaten(Cake)

Eaten(Cake)

¬ Eaten(Cake)

Eaten(Cake)

¬ Eaten(Cake)

lines indicate preconditions and effects. Mutex links are shown as curved gray lines. Not all

mutex links are shown, because the graph would be too cluttered. In general, if two literals

lOMoAR cPSD|16826574

o Definition: This occurs when two actions produce effects that contradict each other.

One action negates the effect of the other.

o Example: Consider the actions "Eat(Cake)" and "the persistence of Have(Cake)".

▪ "Eat(Cake)" results in the effect of no longer having the cake, effectively

negating "Have(Cake)".

▪ If there is a plan or a state that involves maintaining "Have(Cake)" while also

including the action "Eat(Cake)", the effects are inconsistent because

"Eat(Cake)" directly negates "Have(Cake)".

2. Interference:

o Definition: This occurs when one of the effects of an action negates a precondition

required for another action to be performed.

o Example: Again, using "Eat(Cake)" and "the persistence of Have(Cake)":

▪ For the state "Have(Cake)" to persist, it must be true that the cake is not eaten.

▪ "Eat(Cake)" negates "Have(Cake)" because once the cake is eaten, the

precondition (having the cake) no longer holds.

▪ Therefore, "Eat(Cake)" interferes with the persistence of "Have(Cake)" by

negating its precondition.

3. Competing Needs:

o Definition: This occurs when the preconditions of two actions are mutually exclusive,

meaning they cannot both be true at the same time.

o Example: Consider the actions "Bake(Cake)" and "Eat(Cake)":

▪ "Bake(Cake)" has a precondition that there is no cake (since you bake a cake

when there isn't one yet).

▪ "Eat(Cake)" has a precondition that there is a cake to eat.

▪ These preconditions are mutually exclusive because you cannot

simultaneously be in a state where there is no cake (precondition for

"Bake(Cake)") and there is a cake (precondition for "Eat(Cake)").

▪ Therefore, these actions are mutex (mutually exclusive) because their

preconditions cannot both be satisfied at the same time.

In summary:

• Inconsistent effects deal with contradictory outcomes of actions.

• Interference involves one action negating the necessary conditions for another.

• Competing needs concern mutually exclusive preconditions of actions.

OTHER CLASSICAL PLANNING APPROACHES

Currently the most popular and effective approaches to fully automated planning are:

• Forward state-space search with carefully crafted heuristics

• Search using a planning graph

These approaches are not the only ones tried in the 40-year history of automated planning. Figure 10.11

shows some of the top systems in the International Planning Competitions, which have been held every even

year since 1998.

Year Track Winning Systems (approaches)

2008 Optimal GAMER (model checking, bidirectional search)

2008 Satisficing LAMA (fast downward search with FF heuristic)

2006 Optimal SATPLAN, MAXPLAN (Boolean satisfiability)

2006 Satisficing SGPLAN (forward search; partitions into independent subproblems)

2004 Optimal SATPLAN (Boolean satisfiability)

2004 Satisficing FAST DIAGONALLY DOWNWARD (forward search with causal graph)

2002 Automated LPG (local search, planning graphs converted to CSPs)

2002 Hand-coded TLPLAN (temporal action logic with control rules for forward search)

2000 Automated FF (forward search)

2000 Hand-coded TALPLANNER (temporal action logic with control rules for forward search)

1998 Automated IPP (planning graphs); HSP (forward search)

Figure 10.11 Some of the top-performing systems in the International Planning Compe-

tition. Each year there are various tracks: “Optimal” means the planners must produce the

shortest possible plan, while “Satisficing” means nonoptimal solutions are accepted. “Hand-

coded” means domain-specific heuristics are allowed; “Automated” means they are not.

In this section we first describe the translation to a satisfiability problem and then describe other influential

approaches: planning as first-order logical deduction; as constraint satisfaction; and as plan refinement.

(a)Classical planning as Boolean satisfiability

we show how to translate a PDDL description into a form that can be processed by SATPLAN. The

translation is a series of straightforward steps:

1. Propositionalize the Actions:

o Definition: This involves transforming the general action schemas into specific

ground actions by substituting constants for each variable.

o Example: If you have an action schema "Move(x, y)" and objects "A" and "B", you

would create ground actions like "Move(A, B)", "Move(B, A)", etc.

o Purpose: Although these ground actions are not directly part of the final translation,

they are necessary for defining subsequent steps.

2. Define the Initial State:

o Definition: Specify the truth value of each fluent (a proposition that can change over

time) in the initial state.

o Example: If the initial state of the problem specifies that "At(A, Location1)" is true

and "At(B, Location1)" is not mentioned, then you assert "At(A, Location1)_0" as true

and "¬At(B, Location1)_0" as true (since unmentioned fluents are assumed false).

o Purpose: To establish the starting conditions from which the plan will begin.

3. Propositionalize the Goal:

o Definition: Transform the goal into a propositional form by replacing variables with

disjunctions over all possible constants.

o Example: If the goal is "On(A, x) ∧ Block(x)" and you have objects "A", "B", and

"C", this becomes: (On(A, A) Λ Block (A)) ∨ (On(A, B) Λ Block (B)) ∨ (On(A, C) Λ

Block (C)) Purpose: To express the goal in a way that can be evaluated using

propositional logic.

4. Add Successor-State Axioms:

o Definition: For each fluent FFF, add axioms that describe how the truth value of FFF

changes from one time step to the next.

o Formula: Ft+1 ⇔ ActionCausesFt ∨ (Ft Λ чActionCausesNotFt) ,

 where ActionCausesF is a disjunction of all the ground actions that have F in their add list,

and

 ActionCausesNotF is a disjunction of all the ground actions that have F in their delete list.

lOMoAR cPSD|16826574

 Purpose: To capture the dynamic behavior of the system in response to actions.

5. Add Precondition Axioms:

o Definition: For each ground action AAA, add axioms that specify its preconditions

must hold for the action to be executed.

o Formula: For each ground action A, add the axiom At ⇒ PRE(A)t, that is, if an action is

taken at time t, then the preconditions must have been true.

o Explanation: If action AAA is taken at time ttt, then its preconditions must have been

true at ttt.

o Purpose: To ensure that actions can only occur when their preconditions are satisfied.

6. Add Action Exclusion Axioms:

o Definition: State that each action is distinct from every other action, ensuring that no

two actions occur simultaneously.

o Formula: If you have actions A and B, you add axioms like:

 ¬(At∧Bt)\neg (A_t \wedge B_t)¬(At∧Bt)

o Purpose: To maintain the exclusivity of actions, ensuring only one action can occur at

any given time.

7. Translation for SATPLAN:

o Definition: Compile the problem into a propositional logic form that a SAT solver

like SATPLAN can process to find a solution.

o Purpose: To leverage SAT solvers' efficiency in solving complex planning problems

by translating them into a suitable form.

These steps systematically convert a planning problem into a propositional logic representation,

making it solvable by automated reasoning tools like SAT solvers.

(b) Planning as first-order logical deduction: Situation calculus

PDDL is a language that carefully balances the expressiveness of the language with the complexity

of the algorithms that operate on it. But some problems remain difficult to express in PDDL. For

example, we can’t express the goal “move all the cargo from A to B regardless of how many pieces

of cargo there are” in PDDL, but we can do it in first-order logic, using a universal quantifier.

Likewise, first-order logic can concisely express global constraints such as “no more than four robots

can be in the same place at the same time.” PDDL can only say this with repetitious preconditions

on every possible action that involves a move.

The propositional logic representation of planning problems also has limitations, such as the

fact that the notion of time is tied directly to fluents. For example, South2 means “the agent is

facing south at time 2.” With that representation, there is no way to say “the agent would be facing

south at time 2 if it executed a right turn at time 1; otherwise it would be facing east.” First-order

logic lets us get around this limitation by replacing the notion of linear time with a notion of

branching situations, using a representation called situation calculus that works like this:

Key Concepts:

1. Situations:

o Definition: The initial state is called a situation. If sss is a situation and aaa is an action, then

RESULT(s,a)\text{RESULT}(s, a)RESULT(s,a) is also a situation.

o Properties: Two situations are the same if their start and actions are the same:

(RESULT(s,a)=RESULT(s′,a′))⇔(s=s′∧a=a′)(\text{RESULT}(s, a) = \text{RESULT}(s', a'))

\Leftrightarrow (s = s' \wedge a = a')(RESULT(s,a)=RESULT(s′,a′))⇔(s=s′∧a=a′)

2. Fluents:

o Definition: Functions or relations that can vary from one situation to the next. The situation

sss is always the last argument.

o Example: At(x,l,s)\text{At}(x, l, s)At(x,l,s) Means object xxx is at location lll in situation sss.

3. Possibility Axioms:

o Definition: Describe the preconditions of actions, indicating when an action can be taken.

o Example from the Wumpus world:

 Alive(Agent, s) Λ Have(Agent, Arrow, s) ⇒ Poss(Shoot, s)

o

4. Successor-State Axioms:

o Definition: Describe how fluents change as a result of actions.

o General Form: that says what happens to the fluent, depending on what action is taken. This

is similar to the approach we took for propositional logic. The axiom has the form

Action is possible ⇒

(Fluent is true in result state e Action’s effect made it true

V It was true before and action left it alone) .

For example, the axiom for the relational fluent Holding says that the agent is holding some gold g after

executing a possible action if and only if the action was a Grab of g or if the agent was already holding g

and the action was not releasing it:

Poss(a, s) ⇒

Figure 10.12 Situations as the results of actions in the wumpus world.

S0

Result(Result(S0,µForw
ard),

Turn(Right))

Turn(Right)

Result(S0,µForward)

lOMoAR cPSD|16826574

(Holding (Agent, g, Result (a, s)) e

a = Grab(g) V (Holding (Agent, g, s) Λ a /= Release (g))) .

5. Unique Action Axioms:

• Definition: Ensure that actions are distinct from one another.

• Example: the agent can deduce that, for example, a /= Release (g). For each distinct pair of action

names Ai and Aj we have an axiom that says the actions are different:

Ai(x, . . .) /= Aj(y, . . .)

and for each action name Ai we have an axiom that says two uses of that action name

are equal if and only if all their arguments are equal:

Ai(x1, . . . , xn) = Ai(y1, . . . , yn) e x1 = y1 Λ . . . Λ xn = yn .

 Solution: A solution to a planning problem in situation calculus is a situation (a sequence of actions)

that satisfies the goal.

Conclusion:

While PDDL offers a practical balance for many planning problems, its limitations in expressiveness

make it less suitable for more complex goals and constraints. Situation calculus, with its greater

expressiveness and ability to handle branching time, offers a more powerful framework but comes

with significant practical challenges in terms of inference efficiency and the development of effective

heuristics.

(c)Planning as constraint satisfaction:

The initial state can be used to prune what is not reachable and the goal to prune what is not

useful. The CSP will be defined for a finite number of steps; the number of steps can be adjusted to

find the shortest plan. One of the CSP methods can then be used to solve the CSP and thus find a

plan.

The CSP representation assumes a fixed planning horizon (i.e., a fixed number of steps). To find

a plan over any number of steps, the algorithm can be run for a horizon of k=0, 11, 22,…until a

solution is found. For the stochastic local search algorithm, it is possible to search multiple horizons

at once, searching for all horizons, 𝑘 from 0 to 𝑛, and allowing 𝑛 to vary slowly.

(d)Planning as Refinement of Partially Ordered Plans

• Traditional planning approaches generate totally ordered plans, which means actions are

strictly sequenced. However, in many situations, subproblems are independent and don't

require a strict sequence.

• Partially ordered plans offer a more flexible approach by allowing some actions to be

performed independently of others.

• Partially ordered plans are created by a search through the space of plans rather than

through the state space.

• We start with the empty plan consisting of just the initial state and the goal, with no actions

lOMoAR cPSD|16826574

in between, as in the top of Figure 10.13.

• The search procedure then looks for a flaw in the plan, and makes an addition to the plan to

correct the flaw (or if no correction can be made, the search backtracks and tries something

else).

• A flaw is anything that keeps the partial plan from being a solution. For example, one flaw

in the empty plan is that no action achieves At (Spare, Axle).

• One way to correct the flaw is to insert into the plan the action PutOn(Spare, Axle).

• Of course that introduces some new flaws: the preconditions of the new action are not

achieved.

• The search keeps adding to the plan (backtracking if necessary) until all flaws are resolved,

as in the bottom of Figure 10.13.

• At every step, we make the least commitment possible to fix the flaw.

• For example, in adding the action Remove (Spare, Trunk) we need to commit to having it

occur before PutOn(Spare, Axle), but we make no other commitment that places it before or

after other actions. If there were a variable in the action schema that could be left unbound,

we would do so.

. Partial-order planning is also often used in domains where it is important for humans to understand

the plans. Operational plans for spacecraft and Mars rovers are generated by partial-order planners and are

then checked by human operators before being uploaded to the vehicles for execution. The plan refinement

approach makes it easier for the humans to understand what the planning algorithms are doing and verify that

they are correct.

ANALYSIS OF PLANNING APPROACHES

Planning in artificial intelligence combines elements of search and logic. A planner can be seen either

as a program that searches for a solution or one that proves the existence of a solution constructively.

Examples of Planning Systems

(a)

¬ At(Flat,Axle)

(b)

¬ At(Flat,Axle)

(c)

Figure 10.13 (a) the tire problem expressed as an empty plan. (b) an incomplete partially

ordered plan for the tire problem. Boxes represent actions and arrows indicate that one action

must occur before another. (c) a complete partially-ordered solution.

Finish Start

Finish Start

Finish Start

1. GRAPHPLAN:

o Records mutexes (mutual exclusions) to highlight difficult interactions between actions.

o These mutexes help identify where actions cannot occur simultaneously, aiding in managing

the complexity of planning.

2. SATPLAN:

o Represents mutex relations using the general CNF (Conjunctive Normal Form) rather than

specific data structures.

o Converts planning problems into Boolean satisfiability problems, allowing the use of SAT

solvers to find solutions.

Serializable Subgoals in Practice

1. Blocks World:

o Goal: Build a tower (e.g., A on B, B on C, C on the Table).

o Subgoals are serializable bottom to top: once C is on the Table, it doesn’t need to be moved

again while achieving other subgoals.

o This method avoids backtracking and can solve any problem in the blocks world efficiently,

though it may not always find the shortest plan.

2. Remote Agent Planner (NASA’s Deep Space One):

o The planner recognized that spacecraft commands have serializable propositions, simplifying

control.

o This approach enabled real-time control of the spacecraft by eliminating most of the search,

previously thought impossible.

Future Directions in Planning

Planners like GRAPHPLAN, SATPLAN have advanced the field by improving performance,

clarifying representation issues, and developing useful heuristics. However, there is a need for further

progress in tackling larger problems. This may involve:

1. Synthesis of Representations:

o Combining factored and propositional representations with first-order and hierarchical

representations.

2. Efficient Heuristics:

o Developing new heuristics that can efficiently handle larger and more complex planning

problems.

Conclusion

Planning in AI is a dynamic field that leverages both search and logic to solve complex problems. By

addressing combinatorial explosion, identifying independent subproblems, and recognizing

serializable subgoals, planners can achieve significant performance improvements. Future

advancements will likely require new techniques and representations to scale effectively to larger

problems.

lOMoAR cPSD|16826574

PLANNING AND ACTING IN THE REAL WORLD:

We have learnt the most basic concepts, representations, and algorithms for planning. Planners that are

are used in the real world for planning and scheduling the operations of spacecraft, factories, and

military campaigns are more complex; they extend both the representation language and the way the

planner interacts with the environment. This concepts extends the classical language for planning to

talk about actions with durations and resource constraints, methods for constructing plans that are

organized hierarchically. architectures that can handle uncertain environments and interleave

deliberation with execution, and gives some examples of real-world systems.

Time, Schedules, And Resources:

• The classical planning representation talks about what to do, and in what order, but it cannot

talk about time: how long an action takes and when it occurs.

• For example, the planners could produce a schedule for an airline that says which planes are

assigned to which flights, but we really need to know departure and arrival times as well. This

is the subject matter of scheduling.

• The real world also imposes many resource constraints; for example, an airline has a limited

number of staff—and staff who are on one flight cannot be on another at the same time. This

section covers methods for representing and solving planning problems that include

temporal and resource constraints.

• The approach we take in this section is “plan first, schedule later”: that is, we divide the

overall problem into a planning phase in which actions are selected, with some ordering

constraints, to meet the goals of the problem, and a later scheduling phase, in which

temporal information is added to the plan to ensure that it meets resource and deadline

constraints.

Representing temporal and resource constraints

A typical job-shop scheduling problem, consists of a set of jobs, each of which consists a

collection of actions with ordering constraints among them. Each action has a duration and a set

of resource constraints required by the action. . For simplicity, we assume that the cost function is

just the total duration of the plan, which is called the makespan.

Figure 11.1 shows a simple example: a problem involving the assembly of two cars. The problem

consists of two jobs, each of the form [AddEngine , AddWheels , Inspect]. Then the Resources

statement declares that there are four types of resources, and gives the number of each type

available at the start: 1 engine hoist, 1 wheel station, 2 inspectors, and 500 lug nuts.

Solving scheduling problems

• We begin by considering just the temporal scheduling problem, ignoring resource constraints.

• To minimize makespan (plan duration), we must find the earliest start times for all the actions

consistent with the ordering constraints supplied with the problem.

• It is helpful to view these ordering constraints as a directed graph relating the actions, as shown

in Figure 11.2.

• We can apply the critical path method (CPM) to this graph to determine the possible start

and end times of each action.

• A path through a graph representing a partial-order plan is a linearly ordered sequence of

actions beginning with Start and ending with Finish.

• The critical path is that path whose total duration is longest; the path is “critical”

because it determines the duration of the entire plan—shortening other paths doesn’t shorten

the plan as a whole, but delaying the start of any action on the critical path slows down the

whole plan.

• Actions that are off the critical path have a window of time in which they can be executed.

• The window is specified in terms of an earliest possible start time, ES , and a latest possible

start time, LS .

• The quantity LS – ES is known as the slack of an action. We can see in Figure 11.2 that

the whole plan will take 85 minutes, that each action in the top job has 15 minutes of slack,

and that each action on the critical path has no slack (by definition). Together the ES and LS

times for all the actions constitute a schedule for the problem.

Figure 11.1 A job-shop scheduling problem for assembling two cars, with resource con-

straints. The notation A ≺ B means that action A must precede action B.

Jobs({AddEngine1 ≺ AddWheels1 ≺ Inspect1 },

{AddEngine2 ≺ AddWheels2 ≺ Inspect2 })

Resources (EngineHoists(1), WheelStations (1), Inspectors (2), LugNuts(500))

Action(AddEngine1 , DURATION:30,

USE:EngineHoists(1)) Action(AddEngine2
, DURATION:60, USE:EngineHoists(1))

Action(AddWheels1 , DURATION:30,

CONSUME:LugNuts(20), USE:WheelStations (1))

CONSUME:LugNuts(20), USE:WheelStations (1))

Action(Inspect i, DURATION:10,

lOMoAR cPSD|16826574

The following formulas serve as a definition for ES and LS and also as the outline of a

dynamic-programming algorithm to compute them. A and B are actions, and A ≺ B means that A

comes before B:

ES (Start) = 0

ES (B) = maxA ≺ B ES (A)+ Duration(A)

LS (Finish) = ES (Finish)

LS (A) = minB > A LS (B) − Duration (A) .

When we introduce resource constraints, the resulting constraints on start and end times

become more complicated. For example, the AddEngine actions, which begin at the same

time in Figure 11.2, require the same EngineHoist and so cannot overlap. The “cannot

overlap” constraint is a disjunction of two linear inequalities, one for each possible ordering.

The introduction of disjunctions turns out to make scheduling with resource constraints NP-

hard

.

WheelStations(1)

Figure 11.3 A solution to the job-shop scheduling problem from Figure 11.1, taking into

account resource constraints. The left-hand margin lists the three reusable resources, and

actions are shown aligned horizontally with the resources they use. There are two possi- ble

schedules, depending on which assembly uses the engine hoist first; we’ve shown the

shortest-duration solution, which takes 115 minutes.

Figure 11.3 shows the solution with the fastest completion time, 115 minutes. This is 30

minutes longer than the 85 minutes required for a schedule without resource constraints. Notice that

there is no time at which both inspectors are required, so we can immediately move one of our two

inspectors to a more productive position.

One simple called The minimum slack algorithm is a heuristic method used to solve

scheduling problems with resource constraints. The steps of this heuristic, as you mentioned, are as

follows:

1. Identify Unscheduled Actions:

o At each iteration, identify the set of unscheduled actions that have all their

predecessors scheduled.

2. Select Action with Minimum Slack:

o From this set, select the action that has the least slack. Slack is the difference between

the latest start time (LS) and the earliest start time (ES).

3. Schedule the Selected Action:

o Schedule this selected action to start at its earliest possible start time (ES).

4. Update Start and Finish Times:

o Update the ES and LS times for all affected actions. This involves recalculating the

ES and LS times based on the newly scheduled action and its duration.

5. Repeat:

o Repeat the process until all actions are scheduled.

It often works well in practice, but for our assembly problem it yields a 130–minute solution, not the 115–

minute solution of Figure 11.3.

Hierarchical Planning:

The problem-solving and planning methods operate with a fixed set of atomic actions.For plans

executed by the human brain, atomic actions are muscle activations. In very round numbers, we have

about 103 muscles to activate ,we can modulate their activation perhaps 10 times per second; and we

are alive and awake for about 109 seconds in all. Thus, a human life contains about 1013 actions,

give or take one or two orders of magnitude. Even if we restrict ourselves to planning over much

shorter time horizons—

For example, a two-week vacation in Hawaii—a detailed motor plan would contain around 1010

actions. This is a lot more than 1000.

To bridge this gap, AI systems will probably have to do what humans appear to do: plan at

higher levels of abstraction.

Example:

A reasonable plan for the Hawaii vacation might be “Go to San Francisco airport; take Hawaiian

Airlines flight 11 to Honolulu; do vacation stuff for two weeks; take Hawaiian Airlines flight 12 back

to San Francisco; go home.” Given such a plan, the action “Go to San Francisco airport” can be

viewed as a planning task in itself, with a solution such as “Drive to the long-term parking lot; park;

take the shuttle to the terminal.” Each of these actions, in turn, can be decomposed further, until we

reach the level of actions that can be executed without deliberation to generate the required motor

control sequences.

lOMoAR cPSD|16826574

High-level actions

Hierarchical Task Network (HTN) planning is a method used in artificial intelligence for planning

complex tasks. It involves breaking down a high-level task into simpler, more manageable sub-tasks

(actions) until primitive actions (those that can be directly executed) are reached. Here's a detailed

explanation of how HTN planning works and its benefits:

Key Concepts of HTN Planning

1. Top-Level Action (Act):
o The process starts with a single top-level action called Act.

o The goal is to find an implementation of Act that achieves the desired goal.

2. Refinement of Actions:
o Each high-level action (HLA) can be refined into a sequence of sub-actions.

o This refinement process continues recursively until only primitive actions are left.

o To prevent infinite recursion, a special refinement is provided: an empty list of steps with a

precondition equal to the goal. This means that if the goal is already achieved, no further

actions are needed.

3. Algorithm for HTN Planning:
o Repeatedly choose an HLA in the current plan and replace it with one of its refinements.

o Continue this process until the plan achieves the goal.

o Breadth-first tree search can be used to explore plans, considering plans based on the depth of

nesting of refinements rather than the number of primitive steps.

4. Knowledge Encoding:
o HTN planning encodes a significant amount of domain knowledge in the refinements and

their preconditions.

o This allows HTN planners to generate large and complex plans efficiently, often with minimal

search.

5. Example of HTN Planning:

Searching for primitive solutions in Hierarchical palnning

• The approach leads to a simple algorithm: repeatedly choose an HLA in the current plan and

replace it with one of its refinements, until the plan achieves the goal.

• One possible implementation based on breadth-first tree search is shown in Figure 11.5. Plans

are considered in order of depth of nesting of the refinements, rather than number of primitive

steps.

Initial Plan:

• Start with the top-level action: MakeBreakfast

• First Refinement:

• Refine MakeBreakfast into [CookOmelette, MakeToast, BrewCoffee]

• Second Refinement:

• Refine CookOmelette into [CrackEggs, BeatEggs, PourEggsInPan, CookEggs]

• Refine MakeToast into [GetBread, PutBreadInToaster, StartToaster, RemoveToast]

• Refine BrewCoffee into [GetCoffeeBeans, GrindCoffeeBeans, BoilWater,

BrewCoffeeInFrenchPress]

PLANNING AND ACTING IN NONDETERMINISTIC DOMAINS:

we extend planning to handle partially observable, nondeterministic, and un- known environments.

Extended search methods are :

(a) Sensorless planning (also known as conformant planning) for environments with no

observations;

(b) Contingency planning for partially observable and nondeterministic environments;

(c) Online planning and replanning for unknown environments.

These agent’s focus on belief states—the sets of possible physical states the agent might be in—for

unobservable and partially observable environments.

lOMoAR cPSD|16826574

Example:

Consider this problem: given a chair and a table, the goal is to have them match—have the same

color. In the initial state we have two cans of paint, but the colors of the paint and the furniture are

unknown. Only the table is initially in the agent’s field of view:

Initial state: Init(Object (Table) ∧ Object(Chair) ∧ Can(C1) ∧

 Can(C2) ∧ InView (Table))

Goal State: Goal (Color (Chair , c) ∧ Color (Table, c))

There are two actions:

(a)Removing the lid from a paint can and painting an object using the paint from an open can.

Action(RemoveLid (can),

PRECOND:Can(can)

EFFECT:Open(can))
Action(Paint(x , can),

PRECOND:Object(x) ∧ Can(can) ∧ Color (can, c) ∧ Open(can)

EFFECT:Color (x, c))

(2) To solve a partially observable problem, the agent will have to percepts , when it is executing the

plan. The percept will be supplied by the agent’s sensors when it is actually acting, but when it is

planning it will need a model of its sensors, this model was given by a function, PERCEPT(s). For

planning, we augment PDDL with a new type of schema, the percept schema:

Percept (Color (x, c),

PRECOND:Object(x) ∧ InView(x)

Percept (Color (can, c),

PRECOND:Can(can) ∧ InView (can) ∧ Open(can)

The first schema says that whenever an object is in view, the agent will perceive the color of the

object The second schema says that if an open can is in view, then the agent perceives the color of

the paint in the can. Of course, the agent will need an action that causes objects (one at a time) to

come into view:

Action(LookAt (x),

PRECOND:InView(y) ∧ (x /= y)

EFFECT:InView(x) ∧ ¬InView(y))

For a fully observable environment, we would have a Percept axiom with no preconditions for each

fluent that is directly it percepts the colour and identify the colours of table and chair.

(a) Sensorless planning

o Now we search in a belief-state space

o Convert sensorless planning problem into a belief-state planning problem

o The belief state represented by a logical formula instead of explicitly

enumerating a set of states

o Initial state can ignore the \(InView\) fluents

▪ Agent has no sensors

o Can also take as given the unchanging facts

▪ (Object(Table) and Object(Chair) and Can(C_1) and Can(C_2))

▪ These hold in every belief state

• Agent doesn’t know the color of cans or whether they are open or closed, it knows

cans have colors.

 ∀ x ∃ c Color (x, c).

• After Skolemizing,(Note: Skolemization is a transformation on first-order logic formulae,

which removes all existential quantifiers from a formula.). we obtain the initial belief state:

 b0 = Color (x, C(x)) .

• We do not follow the closed-world assumption because the fluent is mentioned as

only positive i.e., true statement.

• We switch to an open-world assumption

▪ States contain both, positive and negative fluents

▪ If a fluent doesn’t appear, its value is unknown

o A possible solution

o [RemoveLid (Can1), Paint(Chair , Can1), Paint (Table, Can1)] .

(b) Contingent planning

Contingent planning involves generating plans with conditional branches based on percepts, suitable

for environments with partial observability, non-determinism, or both. This type of planning requires

the agent to create a plan that includes different actions depending on the information received from

the environment.

Consider a painting problem where the agent must paint objects based on their colors, but it cannot

initially see the colors and must use percepts to gather information. A possible contingent plan is:

Initial Perception Actions and Conditional Branching:

(c)Online replanning:

o A robot might seem to perform a repetitive task

o Replanning requires execution monitoring in order to know when a new

plan is required

o Useful when a contingency planning is continuosly replanning

o Some branches of a partially constructed contingent plan could just

say Replan

o Amount of planning in advance and how much planning is left for later is a

tradeoff.

o Replanning may also be required when the agent’s model of the world is

incorrect

Model for an action may have:

▪ Missing precondition: i.e. Agent may not know it needs a screwdriver to open a

paint can

▪ A missing effect: i.e. Floor may get paint when painting an object

lOMoAR cPSD|16826574

▪ A missing state variable: i.e. Amount of paint in a can, the amount needed can’t be

zero

Online agent has three levels to monitor the environment and checks for it before

executing an action

▪ Action monitoring: before executing an action, agent verifies that all preconditions

still hold

▪ Plan monitoring: before executing an action, agent verifies that remaining plan will

still succeed

▪ Goal monitoring: before executing an action, agent checks to see if there is a better

set of goals it could be trying to achieve

o Schematic of action monitoring

Multi-Agent Planning in AI

▪ we have assumed that only one agent is doing the sensing, planning, and acting.

▪ When there are multiple agents in the environment, each agent faces a multiagent planning

problem in which it tries to achieve its own goals with the help of others.

▪ An agent with multiple effectors that can operate concurrently—for example, a human who can

type and speak at the same time—needs to do multi effector planning to manage each effector

while handling positive and negative interactions among the effectors.

▪ When the effectors are physically decoupled into detached units—as in a fleet of delivery robots

in a factory— multi effector planning becomes multibody planning.

▪ A multibody problem is still a “standard” single-agent problem as long as the relevant sensor

information collected by each body can be pooled—either centrally or within each body—to form

a common estimate of the world state that then informs the execution of the overall plan; in this

case, the multiple bodies act as a single body.

▪ When communication constraints make this impossible, we have what is sometimes called a

decentralized planning problem; this is perhaps a misnomer, be- cause the planning phase is

centralized but the execution phase is at least partially decoupled.

▪ Finally, some systems are a mixture of centralized and multiagent planning. For ex- ample, a

delivery company may do centralized, offline planning for the routes of its trucks and planes

each day, but leave some aspects open for autonomous decisions by drivers and pilots who can

respond individually to traffic and weather situations. Also, the goals of the company and its

employees are brought into alignment, to some extent, by the payment of incentives (salaries and

bonuses)—a sure sign that this is a true multiagent system.

▪ The issues involved in multiagent planning can be divided roughly into two sets. The first,

involves issues of representing and planning for multiple simultaneous actions; these issues occur

in all settings from multieffector to multiagent plan ning. The second, involves issues of

cooperation, coordination, and competition arising in true multiagent settings

(a)Planning with multiple simultaneous actions

For the time being, we will treat the multieffector, multibody, and multiagent settings in the same

way, labeling them generically as multiactor settings, using the generic term actor to cover

effectors, bodies, and agents.

The goal of this section is to work out how to define transition models, correct plans, and efficient

planning algorithms for the multiactor setting. A correct plan is one that, if executed by the actors,

achieves the goal.

(b)Planning with multiple agents: Cooperation and coordination

▪ Now let us consider the true multiagent setting in which each agent makes its own plan.—

each agent simply computes the joint solution and executes its own part of that solution.

▪ A first pass at a multiactor definition might look like Figure 11.10. With this definition, it is

easy to see that the following joint plan plan works:

PLAN 1:

A : [Go(A, RightBaseline), Hit(A, Ball)]

B : [NoOp(B), NoOp(B)] .

Figure 11.10 The doubles tennis problem. Two actors A and B are playing

together and can be in one of four locations: LeftBaseline , RightBaseline ,

LeftNet , and RightNet . The ball can be returned only if a player is in the right

place. Note that each action must include the actor as an argument.

Approaching (Ball , RightBaseline)) ∧ Partner (A, B) ∧ Partner (B,
A)

Goal (Returned(Ball) ∧ (At(a, RightNet) ∨ At(a, LeftNet))

EFFECT:Returned(Ball))

Action(Go(actor , to),

EFFECT:At(actor , to) ∧ ¬ At(actor , loc))

lOMoAR cPSD|16826574

Problems arise, however, when a plan has both agents hitting the ball at the same time. For

example, the Hit action could be described as follows:

Action(Hit(a, Ball),

CONCURRENT:b /= a ⇒ ¬Hit(b, Ball)

PRECOND:Approaching (Ball, loc) ∧ At(a, loc)

EFFECT:Returned (Ball)) .

In other words, the Hit action has its stated effect only if no other Hit action by another agent occurs

at the same time

PLAN 2:

A : [Go(A, LeftNet), NoOp(A)]

B : [Go(B, RightBaseline), Hit(B, Ball)] .

If both agents can agree on either plan 1 or plan 2, the goal will be achieved. But if A chooses plan 2

and B chooses plan 1, then nobody will return the ball. Conversely, if A chooses 1 and B chooses 2,

then they will both try to hit the ball.

